Waveform Generation
Language

2026.0

Introduction

Waveform Generation Language (WGL), by Test Systems Strategies, Inc. (TSSI), is a data
description language. It is used to convey an editable ASCII representation of the data
between design and test.

For large volume of data, especially with scan data, a binary format for the ScanState and
Pattern sections is supported, to be used (if desired) in place of ASCII pattern data. (Do
not edit a WGL file that contains binary pattern data; null pattern bits may be deleted by
the editor.)

WGL supports both scan hardware and test program generation that uses defined variables
and embedded equation expressions.

WGL Language Conventions

The WGL language is free-form (multiple white spaces are treated as a single white space
and line returns are ignored) and limited to a line length of 512 characters. WGL reserved
words are not case sensitive; keywords may be entered in any mix of upper and lower case
letters. For user-defined names and pattern state characters, case is significant. The language
uses the ASCII set of printable characters as legal input characters. WGL supports such
features as macros, include files, in-line comments, post-compilation annotation, and many
other operations normally available in programming languages.

Wherever “TDS” is mentioned, it represents a TSSI product that was introduced at the same
time as the WGL creation. Stands for Test Development Series, TDS was the first
application that uses the WGL standard. Hence, the state characters in WGL are often
referred as TDS states, or TDSstate. TDS has gone through transformation and become the

1 TSSI © 1979-2026

Waveform Generation Language

latest TSSI product called Solstice-TDS. In this specification, TDS and Solstice-TDS will
be used interchangeably.

Wherever “WDB” is mentioned, it represents a structured random access database that is a
binary equivalent of WGL. WDB stands for Waveform DataBase or WGL DataBase,
interchangeably. The purpose for having WDB as a tester-neutral database is to enable
programable data exchange between the design tools and the various tester environments.

TSSI pattern conversion product provides a suite of WDB database clients for test program
development to all leading automatic test equipment (ATE) formats. The database clients
can also re-generate Verilog testbench for design re-simulation.

A library of application programming interface (API) for the WDB is also available for end
users to develop their own proprietary database clients.

WGL Syntax Notation Conventions

In describing the syntax of WGL, the following variation of the Backus-Naur Formalism
(BNF) is used:

= Two colons followed by an equivalence sign (::=) denote a syntactic category to
syntactic rules relationship.

= Double quotation marks (“) or bold typeface denote the literal use of a reserved
word, typographical symbol, or parameter. If double quotation marks are to be used
literally, they are enclosed within single quotation marks (“).

= Angle brackets (<>) denote the use of a user-defined name, integer or floating number.

= Anequivalence sign (=) denotes the definition of a WGL reserved word or lexical primitive.

= Brackets ([]) denote optional syntax, appearing 0 or one time.

= Braces ({ }) denote an unspecified repetition (0 ton times) of the enclosed syntax.
(This notation implies that the enclosed syntax is optional, since zero repetitions of a
syntax is optional usage.)

= A vertical bar (|) denotes separate choices of syntax.

= Parentheses (()) denote grouping of syntax options.

The use of italics in a text reference to a WGL syntactical element indicates higher-level
BNF constructs. Such constructs are expanded to their full definition in the BNF
accompanying the reference. For example, references to FormatDecl would appear in the
appropriate BNF production as follows:

FormatDecl ::= <formatName> *“:” “[” <TDSstate> { “,” <TDSstate> } “]” “;”

TSSI © 1979-2026

Waveform Generation Language

User-defined identifiers, such as <TDSstate>, are defined in the last section: “Glossary of WGL
Terminology™.

NOTE

Do not confuse the BNF use of such typographical symbols as braces ({ })

with WGL’s use of the same symbol. BNF uses braces to show a repetition of
the action enclosed within the braces, while WGL uses braces to mark database
annotations.

Comments

As in other programming languages, you can add explanatory comments to a
WGL program to aid functional clarity.

These comments are preceded by the pound sign (#), and are not included in the WDB, the
binary database output when the TDS WGL In Converter tool is run.

Third party tools can decide on what to do with WGL comments.

Comments can be inserted into any part of a WGL program except WGL annotations. ! (See
“Annotations”) To insert a comment into a WGL program, enter a pound sign (#), followed
by a text string. All characters on the line, starting with the pound sign and the terminating
with the carriage return marking the end of the line, are included in the comment.

A complete BNF syntactical representation of the Comment feature follows.
Comment ::= “#” <any explanatory text> <end-of-line>

Example of WGL comments in a WGL program:

Start Example

Signal block

signal
clk: input; # system clock dataReady:
output; in: input;
readWrite: bidir;
data [0..31]: bidir; # 32-bit data bus
addr [0..15]: input; # 1l6-bit address bus

! The binary pattern file cannot have comments, only annotations.

3 TSSI © 1979-2026

Waveform Generation Language

end

End Example

Identifiers

An identifier is the alphanumeric name of a signal, bus, group, TimePlate, format, timing
generator, pattern, subroutine, et cetera. Identifiers must begin with an alphabetic character,
and may not contain white space (such as blanks, tabs, and newline characters) or any of
the following delimiting characters:

(pound sign) + (plus sign)

{ (left brace) , (comma)

} (right brace) : (colon)

“ (left double quotation marks) ; (semi-colon)

” (right double quotation marks) [(left bracket)

.. (double periods)] (right bracket)
((left parenthesis) . (period)

) (right parenthesis)

Identifiers must not conflict with any of the WGL reserved words. Any names that contain

special characters or reserved words must be entered as a string surrounded by double
quotation marks (“”).

In the WGL syntax descriptions in this chapter, identifiers are enclosed in angle brackets
(<>).

Numbers

Unless noted otherwise, user-defined numeric values are integers that range from zero to
the maximum integer that can be represented on your system’s architecture. Any
exceptions are noted in the appropriate WGL syntax description section of this chapter.

In the WGL syntax descriptions in this chapter, user-defined numeric values are enclosed
in angle brackets (<>).

Reserved Words

WGL reserves certain words as its linguistic set, from which data descriptions and

procedural instructions can be synthesized. These reserved words can appear only in
WGL statements in the correct syntax.

TSSI © 1979-2026

Waveform Generation Language

The following list shows the WGL reserved words:

atepin event leadingedge procedure time

bidir exprset feedback loop ps timegen
binary for macro radix timeplate
boolean force force_or z ms reference timeset
call format mux register timing
channel freerunningclock ns repeat to
compare hex o] scan us
decimal hexadecimal octal scancell vector
direction [offstate scanchain wavedata
dont_care in out scanstate waveform
dutpin initial output signal when
edge input pattern skip window
end integer period subroutine datacount
equationdefaults last_drive pingroup symbolic wide
equationsheet last_force pmode tg

Unlike conventional programming languages, WGL cannot restrict or filter the use of
reserved words. If a design has a signal name (or any other application-specific name) that
conflicts with any of the WGL reserved words, the signal name must be enclosed by
double quotation marks (“) to differentiate the signal name from the reserved word.
This must be done throughout the program wherever the signal name occurs.

Strings
Strings are any sequence of characters surrounded by double quotation marks (“).
Within a string, if you want to use double quotation marks, you must precede each

occurrence with a back slash (\). If you want to use a back slash within a string, you
must precede each occurrence with a back slash. For example, the string: \design®1”"\

The equivalent WGL syntax is:

\\\\design\\\l\ll\\ll

WGL Syntax

WGL is a block-structured language. The body of the WGL program comprises one large
structure, bracketed by opening and closing statements. Within the overall structure are
smaller, more specialized structures, or blocks, each bracketed by opening and closing
statements. A discussion of WGL’s syntactic elements follows.

5 TSSI © 1979-2026

Waveform Generation Language

General Syntax

In its simplest form, a WGL source file requires at least one waveform block with the
following syntax:
waveform <waveFormName> [WaveformParameters]

{ WaveformBlocks }
end

A waveform block is self contained with essentials blocks such as signals, timings, and
patterns to be described in the WaveformBlocks .

Multi-time Domain Waveform Blocks

For devices with multiple time domains (especially when the domains are asynchronous
to one another), multiple waveform blocks can be defined in one WGL source file.
Such WGL can be translated directly to a target tester that supports multi-time domain
applications. Otherwise, pattern conversion tools should merge the multiple waveform
blocks to fit a target tester that has no multi-time domain capability.

Free-running and Asynchronous Clocks

Even though a recommended way to specify a free-running clock or asynchronous clock
is in the Signals block (see Signals), a special case of multi-time domain WGL file can
be made to define these clocks. It’s simply an option to use Waveform Blocks as opposed
to a Signals Block.

Each of the free-running clocks and asynchronous clocks should be defined in a
waveform Dblock of its own time domain using a special reserve word,
freerunningclock, in the waveform block’s [WaveformParameters].

For example:

Start Example

waveform generic (generic domain)
signal
sigl : input;
sig2 : input;
end
timeplate tp period 10ns
sigl := input[Ops:P, 5ns:S];
sig2 := input[Ops:P, 5ns:S];
end

6 TSSI © 1979-2026

Waveform Generation Language

end

pattern pat (sigl, sig2)

vector (+,
vector (+,
vector (
vector (
vector (
vector (
end

waveform async clocks

end

signal

tp) := [0 0];
tp) := [0 1];
tp) := [1 0];
tp) := [1 11;
tp) := [0 0];
tp) := [0 1];

(freerunningclock aclkl domain)

aclk : input;

end

timeplate tp aclk period 7.5ns:
aclk := input[Ops:D, 4ns:U];

end

pattern pat aclk (aclk)

vector (+,
end

aclk) := [-];

End Example

Note that in the example above, the pattern block for the aclk only has to declare 1

pattern row.

If the target tester has the capability to program a free-running and/or

asynchronous clock then the timing defined in the timeplate is sufficient to program the

clock.

Alternatively, if ac1k is to be programmed by patterns, there should be sufficient vector

statements to ensure that the clock signal continues until all waveform domains are
completed. For example, the generic waveform domain has 6 vectors with each vector
having a 10ns period and the pattern duration will be 60ns. For the async clocks
domain, the timeplate period is 7.5ns and thus 8 vectors will be required for the clock to

run for 60ns. In this case, the async clocks waveform becomes:

waveform async_clocks

end

signal

(freerunningclock aclkl domain)

aclk : input;

end
timeplate tp aclk

period 7.5ns:

aclk := input[Ops:D, 4ns:U];

end
pattern pat aclk

end

(aclk)

repeat 8 vector (+, aclk) := [-]; —

NOTE: The freerunningclock reserved word is optional in this case.

TSSI © 1979-2026

Waveform Generation Language

Details of a Typical Single WGL Waveform Block

Valid syntax for the WaveformBlocks is any of sixteen program sections. These sections

are referred to as WGL programming blocks or blocks. The block names are.

EquationDefaults ScanChain
EquationSheet ScanState
Formats Signals
GlobalMode Subroutines
Patterns Symbolics
Pin Groups TimeGens
Registers TimePlates
ScanCells TimingSets

The block names act as block identifiers that categorize the information in each of the
program blocks used. The blocks are optional and can occur in any order, subject to the
restriction that all items in a block must be defined before they are used, and a pattern
block must be defined before a subroutine that uses it is defined. It is possible to create an
empty WDB, a WDB with only signals defined, a WDB with signals and timing defined,
a WDB with only signals and patterns defined, or a WDB with all components defined (as
represented by inclusion of all program blocks describing WDB objects).

A high-level BNF syntactical representation of the WGL program follows:

WaveformPrograms ::= { WaveformProgram }

WaveformProgram ::= “waveform” <waveFormName> [WaveformParameters]
{ WaveformBlocks } “end”

WaveformParameters ::= “(“ [“freerunningclock”] <domainName>")”

WaveformBlocks ::= (EquationSheet | EquationDefaults | GlobalMode | Formats
|TimeGens | PinGroups | Signals |
TimingSets | Registers | TimePlates | Symbolics | Patterns |
Subroutines | ScanCells | ScanChain | ScanState)

EquationSheet ::= “equationsheet” <equationSheetName>
{ ExpessionDecl } “end”

EquationDefaults ::= “equationdefaults” DefaultsDecl “end”
GlobalMode ::= “pmode” “[” PmodeOption “]” «;”

Formats ::= “format” { FormatDecl } “end”

TSSI © 1979-2026

Waveform Generation Language

TimeGens ::= “timegen” { TgDecl } “end”

PinGroups := “pingroup” { PinGroupDecl } “end”

Signals ::= “signal” { SignalDecl } “end”

TimingSets ::= “timeset” <tsNumber> { TgAssign } end”
Registers ::= “register” “(” PinList ©)” { RegisterDecl } “end”
TimePlates ::= “timeplate” <timeplateName> TimePlate “end”

Symbolics ::= “symbolic” SignalReference [SymDirection] Radix
SymbolicAssignment “end”

Patterns ::= “pattern” <patternName> “(” PatternParameters “‘)”
PatternRows “end”

Subroutines ::= “subroutine” <subroutineName> “()”
PatternRows “end”

ScanCells ::= “scanCell” { ScanCellDecl } “end”
ScanChain ::= “scanChain” { ChainDecl } “end”
ScanState ::= “scanState” { ScanStateDecl } “end”

An example of a typical WGL program is:

Start Example

waveform generic
signal

CS_ENABLE : input dutpin[Pl:1]
atepin[CSENAB:1];

A-BUS [15..0] : input radix
hexadecimal
dutpin[P2:2, P3:3, P4:4, P5:5, P6:6, P7:7,
P8:8, P9:9, P10:10, P1l1:11,
pP12:12, P13:13, P14:14, P15:15, Plé6:16,
P17:17]
atepin[ABUS15:2, ABUS14:3, ABUS13:4, ABUS12:5, ABRUS11l:6,
ABUS10:7, ABUS9:8, ABUS8:9, ABUS7:10,
ABUS6:11, ABUS5:12, ABUS4:13, ABUS3:14, ABRUS2:15,
ABUS1:16, ABUSO0:17];

LOAD : input dutpin[P18:18]
atepin[LOAD:18];

end

9 TSSI © 1979-2026

Waveform Generation Language

timeplate Fetch period 300nS

CS_ENABLE := input[0pS:P, 30nS:S];

A-BUS := input[OpS:D, 120nS:S, 260nS:D];

LOAD := input[0pS:P, 100nS:S];

ENP := input[0pS:P, 50nS:S];

DR := input[0OpS:P, 100nS:S];

RO := input[0pS:U, 70nS:S, 180nS:U];

D-BUS := output[0pS:X, 100nS:Q, 250nS:X];

DB-BUS := output[0pS:X, 100nS:Q, 250nS:X];

AD-BUS := input[0pS:P, 100nS:S]; end
timeplate R W period 200nS

CS_ENABLE := input[0OpS:P, 30nS:S];

A-BUS := input[0OpS:D, 60nS:S, 190nS:D];

LOAD := input[0pS:S];

ENP := input[0pS:S];

DR := input[0pS:S];

RO := input[0pS:U, 40nS:S, 180nS:U];

D-BUS := output[0pS:X, 60nS:Q, 190nS:X];

DB-BUS := output[0pS:X, 40nS:Q, 180nS:X];

AD-BUS := input[0OpS:P, 60nS:S]; end

symbolic DB-BUS input radix hexadecimal

RESET := [1lED8];
JMP := [BE43];
LDA := [062D];

end
symbolic DB-BUS output radix binary end

pattern group ALL (CS ENABLE,A-BUS,LOAD,ENP,DR,RO,D-BUS,DB-BUS:I,DB-BUS:O,
AD-B S:I,AD-BUS:0)

repeat 5

vector (0, OpS, Startup) := [1 FFFF 0 0 0 1 3D66 RESET ----—-—-—-————-——-—- AD -- 1;
{ This is the COMMENT for the first row }
vector (5, 2.5uS, Fetch) := [1 ADBB 0 0 1 0 3CDA ---- 0011111000000100 BB -- 1;
vector (6, 2.8us, R W) := [0 0C13 1 0 1 1 ADBB ---- 0010100100101101 84 -- 1;
vector (7, 3uS, Write) := [0 8D18 0 1 0 0O ADBB JMP ———————————————— -- 99],

{ The WRITE cycle contains “mid-cycle I/0” on the DB-Bus.}

vector (8, 3.4uS, Fetch) := [0 EF57 0 1 0 1 ADBB ---- 1100001001000100 98 -- 1;
vector (9, 3.7us, R W) := [0 82DD 1 0 1 0 EF57 ---- 0110000001110101 7B -- 1];
call subl();
vector (16, 5.7uS, Write) := [0 8D18 0 1 0 0 ADBB JMP —-——————————————— —— 99 1;
vector (17, 6.1uS, Fetch) := [0 EF57 0 1 0 1 ADBR ---- 1100001001000100 98 -- 1;
vector (18, 6.4us, R W) := [0 82DD 1 0 1 0 EF57 ---- 0110000001110101 7B -- 1;
vector (19, 6.6uS, Write) := [0 2927 1 1 0 0 AAO3 LDA ———————————————— —— 81 1;
vector (20, 7uS, Fetch) := [0 84F5 0 1 1 1 AA0O3 ---- 0100000110110111 A4 -- 1;
vector (21, 7.3uS, R W) := [1 8DB4 1 0 1 1 84F5 ---- 1100001100010001 97 -- 1;

call subl();

10

TSSI © 1979-2026

Waveform Generation Language

vector (28, 9.3uS, Write) := [0 7306 1 1 0 O 84F5

vector (107, 33.1uS, Fetch) := [0 9DF1 1 1 0 1 140F

{ This is the LAST vector row}
end

subroutine subl ()

-—-—-- 0010100101000010 98 --

00DF ===m=m==mmmmmmmm o 17 1;

1

vector (0, OpS, Write) := [1 59E7 1 0 1 1 EF57 O5FCY9 --—------------—= —— 65 1;
vector(l, 400nS, Fetch) := [0 E327 0 0 0 O EF57 ---- 0111100101000100 BF -- 1;
vector (2, 700nsS, R W) = [0 28E7 1 01 1 E327 ----1101001110000110 CA -- 1;
vector (3, 900nS, Write) := [1 898B 1 1 0 1 E327 O5F8B —-—-—————————————— —— AO 1;
vector (4, 1.3uS, Fetch) := [1 AA0O3 0 O 0 1 E327 =----1001111010101101 83 -- 1;
vector (5, 1.6uS, R W) := [0 1ECD 1 0 1 0 AAO3 =---- 0010001101010101 23 -- 1;
end
end
End Example
11

TSSI © 1979-2026

Waveform Generation Language

Program Block Syntax

All WGL program blocks begin with one of the WGL reserved word block names, and
terminate with the reserved word ‘end’. Between these two delimiting reserved words are
one or more WGL statements used to define data. These WGL statements themselves are
subdivided into smaller structures that address more specific operations, such as setting
timing for individual signal channels.

A colon (:) is used to assign an attribute (such as force or input) to an identifier A colon-
and-equivalence (:=) is used as an assignment operator, assigning a value (such as a
numeric value) to an identifier. See the previous example of a typical WGL program for
these usages.

In permitted instances commas and semi-colons are used as delimiters. When several
parameters occupy the same line, each entry may be delimited by a comma (,). Each
separate WGL statement must be delimited by a semicolon (;). Check the BNF notation
for each WGL block for details of permissible usages.

Generally speaking, the WGL blocks are of three types: generic, tester-specific, and
equation-specific.

The generic blocks let you address data that are related to the test waveforms.

The tester-specific blocks allow you to specify data values (such as in TDS WDB) that are
directly related to the type of tester you are targeting.

The equation-specific blocks let you assign expressions and constant values to variables
that can later be used in place of time values in timing sets and TimePlates. The results of
these equations are then included in the test program you can generate using a TDS
WaveBridge or TesterBridge module.

While it is useful to consider the WGL blocks in these three general categories, it is
important to remember that some blocks contain generic, tester-specific, and equation-
specific components. For example, Signals blocks and TimePlates blocks contain both
generic and tester-specific WGL statements. TimePlate blocks and TimingSet blocks
contain generic, tester-specific, and equation-specific WGL statements.

12

TSSI © 1979-2026

Waveform Generation Language

Table 1 defines the block type of each of the sixteen WGL program blocks.
Table 1. WGL program block types

WGL Program Block

Type

EquationDefaults

equation-specific

EquationSheet equation-specific

Formats tester-specific

GlobalMode generic

Patterns generic

Pin Groups tester-specific

Registers tester-specific

Scan Cells generic

Scan Chain generic

Scan State generic

Signals generic, tester-specific
Subroutines generic

Symbolics generic

TimeGens tester-specific

TimePlates generic, tester-specific, equation-specific
TimingSets tester-specific, equation-specific

Generic Program Blocks

This section discusses the specific syntax for each of the generic program blocks. The
following list shows the WGL generic program blocks:

Signals TimePlates
Scan Cells Patterns
Scan State Subroutines

Scan Chain Symbolics

13 TSSI © 1979-2026

Waveform Generation Language

Use the generic program blocks to define objects (such as in TDS WDB) that are not
specific to any tester. The generic program blocks are presented in the likely order of use
when creating a tester neutral output (such as in WDB).

Signals

The Signals block is used to declare four types of signal definitions: single-bit signals,
multi-bit buses, groups, and multiplexed signals or buses. Groups may include signals,
buses, or other groups.

The syntax of the WGL Signals block is:

signal
SignalDecl
end

A complete BNF syntactical representation of the Signals block follows:
Signals ::= “signal” { SignalDecl } “end”
SignalDecl ::= <signalName> [BusOrGroup] [“:” SignalAttributes] [Pstate] «;”
BusOrGroup ::= (BusRange | GroupMembers | MuxMembers)
BusRange ::= “[” <bitNumber> “..” <bitNumber> *“]”
GroupMembers ::= “[” [SignalReference { “,” SignalReference } | “]”
SignalReference ::= <signalName> [Range]
Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”
MuxMembers ::= [MuxPartList | [Range]

MuxPartList ::= “[” <muxPartName> “,” <muxPartName> [{ «,”
<muxPartName> } | “]”

SignalAttributes ::= ([“mux”] [Direction | [FreeRunningClock]) { Strobe } [Radix]
[DutPins] [AtePins]

Direction ::= (“input” | “output” | “bidir”) [(“reference” | “timing”)]

14 TSSI © 1979-2026

Waveform Generation Language

FreeRunningClock ::= [“freerunningclock™] “period” (Time | <variableName>)
“leadingedge” (Time | <variableName>) “trailingedge” (Time |
<variableName>) “offstate” (“0”|”1”|”D”|"U”)

Strobe ::= (“in” | “out”) “when” “[” <validityClause> “]”

Radix ::= “radix” (“binary

7’|66

octal” | “decimal” | “hex” | “hexadecimal” | “symbolic™)
DutPins ::= “dutpin” “[” DutPinGroup { “,” DutPinGroup } “]”

DutPinGroup ::= (PinInfo | “(” PinInfo { “,” PinInfo } “)”)

PinInfo ::= PinName| PinNumber

PinName ::= <pinName> [PinNumber]

T3¢

PinNumber ::= *“:” <pinNumber>

AtePins ::= “atepin” “[” AtePinGroup { “,” AtePinGroup } “]”

AtePinGroup ::= (AtePinInfo | “(” AtePinInfo { “,” AtePinInfo } “)”)
AtePinlnfo ::= PinInfo [“tg” “[” <timeGenName> { “,” <timeGenName> } “]”]

Pstate ::= “initialp” “[” <TDSstate> “]”

The SignalDecl begins with a user-defined identifier or string. TheSignalDecl can be any
of four types:

= single-bit signals n multi-bit buses

= groups of signals, buses, or other groups

= multiplexed signals or buses
Single-Bit Signals

Single-bit signals are defined by an identifier followed by a list of attributes. The
following is an example of a WGL Signals block with only single-bit signals defined.

Start Example

signal
clk : input;
dataReady: output;
in 1 : input;
readWrite: bidir;

15

TSSI © 1979-2026

Waveform Generation Language

end

End Example

Buses

Buses are defined by an identifier followed by the range of the bus, enclosed in brackets
([1)- The total, combined number of single-bit signals and buses that can be defined is
limited to 16384.

The following is an example of a WGL Signals block with single-bit signals and buses
defined.

Start Example

signal

clk: input; # system clock

dataReady: output;

in 1 : input;

readWrite: bidir;

data [0..31]: bidir; # 32-bit data bus

addr [0..15]: input; # 1l6-bit address bus
end

End Example

Groups

Groups are defined by a list of previously defined single-bit signals, buses, bus members,
or other groups. Groups can name single-bit signals, buses, bus members, or groups only
once in the list. The number of groups used does not contribute to the combined total of
16384.

The following is an example of a WGL Signals block with single-bit signals, buses, and
groups defined:

Start Example

signal
clk: input; # system clock
dataReady: output;
in 1 : input;
readWrite: bidir;
data [0..31]: bidir; # 32-bit data bus
addr [0..15]: input; # 1l6-bit address bus
busses [data, addr]; # both busses
together data0_8 [data[0..8]];

16

TSSI © 1979-2026

Waveform Generation Language

oddAddr [addr[l], addr[3], addr[5], addr[7]1]:;
inputs [clk, in];

End Example

There are predefined groups available that you can use in any correct syntax for groups.
The predefined group names must be entered as upper-case characters, as shown. They

ALL

This predefined group contains all signals, buses, and multiplexed signals and buses
(but not multiplexed parts). Groups are not included.

ALLINPUT

This predefined group contains all signals, buses, and multiplexed signals and buses
(but not multiplexed parts) with the i nput signal direction attribute.

ALLOUTPUT

This predefined group contains all signals, buses, and multiplexed signals and buses
(but not multiplexed parts) with the output signal direction attribute.

ALLBIDIR

This predefined group contains all signals, buses, and multiplexed signals and buses
(but not multiplexed parts) with the bidir (bidirectional) signal direction attribute.

ALLMUX

This predefined group contains all multiplexed signals and multiplexed buses (but not
multiplexed parts) with the mux (multiplexed) signal attribute.

There is no limit to the number of groups that can be defined.
Multiplexed Signals or Buses

Multiplexed signals are defined by an identifier followed by a list of multiplexed parts,
enclosed in brackets ([]); multiplexed buses are defined by an identifier followed by a
list of multiplexed parts, enclosed in brackets ([]), and followed by the Range, which is
also enclosed within brackets ([]).

17

TSSI © 1979-2026

Waveform Generation Language

Do not confuse multiplexed parts (<muxPartName>s) with signals; multiplexed parts
describe the ATE resources used to supply pattern data to a multiplexed signal or bus.
Multiplexed parts function in much the same manner as signals in the TimePlates,
carrying timing parameters and pattern data that is eventually associated with a
multiplexed signal defined in the Signals block.

An example of a WGL Signals block with definitions of a multiplexed signal, a single-bit
signal, and a multiplexed bus follows. Note the use of the mux attribute:

Start Example

Signal
fastClock [edgel, edge2]:mux input; # Multiplexed parts edgel,
edge?2 on multiplexed
signal fastClock
rd/ wr :output;
Databus [busl, bus2] [0..31]:mux bidir; # Multiplexed parts busl,
bus2 on multiplexed
bus Databus
end

End Example

When waveforms are more complicated than those supported by the target tester’s
formatting set, multiplexed signals and buses are typically used to generate test programs
that contain pin multiplexing for these complicated waveforms. By using this ability, you
can multiply the effective frequency of the tester. If multiple pattern bits are needed to
define a waveform (for example, multiple pulses in a single tester cycle), you should
define such signals or buses as multiplexed signals or buses.

Following the optional BusOrGroup syntax are other attributes that are associated with the
current signal declaration. If you are defining a group, only the radix attribute is
applicable.

atepin

ATE pin information is defined in the Signals block using the reserved word atepin.
The AtePinlInfo syntax is used to describe the mapping of the current signal declaration
to tester pins and the binding between a tester pin and its timing generators. The atepin
value is an alphanumeric string. When multiple ATE pins are specified for a multi-bit
bus, the mapping is one-to-one unless parentheses are used to group two or more pin
declarations with a single signal.

ATE timing generator information is also defined in the signals block. The timing
generator binding is introduced with the reserved word tg. The tgName is the name of

18

TSSI © 1979-2026

Waveform Generation Language

the tester-specific timing generator that is generating the timing for all the edges of the
signals in the current signal declaration. Multiple tgNames indicate that the timing
generators are being multiplexed or the existing timing generators (defined in a
TimeGens block) are responsible for multiple edges.

NOTE

Pin information and timing generator information are both tester-specific

The following is an example of a WGL Signals block with dutpin and atepin attributes
defined:

Start Example

Signal
clk : input dutpin [c:pl] atepin [fclock:123 tg [ACLK1l] 1;
dr : input dutpin [r:p2] atepin [pl24:124 tg [BCLKI1,
CCLK1] 1
data: output dutpin [d:p3] atepin [p2:2 tg [STRB1l]];
end
End Example
direction

The direction attribute describes the direction of a signal and controls how the signal
is used in test program generation.

A signal may be forcing (input), sensing (output), or both forcing and sensing at
different times (bidir); the default is input. A direction may not be specified for groups.
If a bus has a direction of input or output, all the bits of the bus must have the same
direction; otherwise, only bidir is legal.

To control how the signal is used in test program generation, you can choose either
reference or timing. If neither of these is specified, the signal is considered in
TimePlate matching and tester program generation. If the clause is used with timing
specified, the signal is considered in TimePlate binding but not in test program
generation. If reference is specified, the signal is not considered in either TimePlate
binding or test program generation. When this clause is used, complete WGL syntax
is still required for the signal (signal, TimePlate track, and data).

The following is an example of a WGL Signals block with signals T1 and I3 use
restricted:

19

TSSI © 1979-2026

Waveform Generation Language

Start Example

signal
I1 : input reference;
I2 : input;
I3 : input timing;

end

End Example

freerunningclock

The ‘freerunningclock’ attribute assigns its signal to be a free-running clock with
direction being forcing (input), also known as a background clock.

Free-running clocks should be independent from the rest of the signals. They are
naturally supported by the testers that have the hardware equivalence which allows
free-running clocks to be at any frequency, whether or not in sync with the rest of the
signals on the device.

Conversion tools should program these free-running clocks in separate time domain(s)
when applicable.

For target testers without multi-time domains or free-running clock support,
conversion tools must “condition” them to be able to function in the same time
domain as the rest of the signals via alignment or other conditioning techniques.

The keyword “freerunningclock” is case insensitive, and it’s also optional. When a
keyword “Period” is seen in the signal attribute along with “LeadingEdge”,
“TrailingEdge”, and “OffState”, WGL syntax allows that to be sufficient to define a
free-running clock.

The following is an example of two free-running clocks defined in a WGL Signals block,
frc8and frclbs:

Start Example

signal
frc8: FreeRunningClock Period 8ns LeadingEdge 2ns TrailingkEdge 4ns OffState 0;
frclb: Period 15ns LeadingEdge Ons TrailingEdge 7.5ns OffState U;
end

End Example

The corresponding waveforms for these two example clocks can be expressed in WGL syntax:

20 TSSI © 1979-2026

Waveform Generation Language

For frc8 clock. The intervals from Ops to 2ns, and 4ns to the end of the

8ns period are off states, so they took on ‘D’ because the specification
was ‘OffState 0’. The ‘OnState’ from 2ns to 4ns is implied ‘U’.
timeplate frc8 period 8nS

Frc8 := input[0OpS:D, 2nS:U, 4nS:D];
end

For frcl5 clock. The intervals from 7.5ns to the end of the 15ns period

is off state, so it took on the state ‘U’ because the specification was
‘OffState U’. The ‘OnState’ from Ons to 7.5ns is implied ‘D’.
timeplate frcl5 period 15nS

Frcl5 := input[0OpS:D, 7.5nS5:U];
End

Strobe Clause

Signals and buses may have optional strobe clauses following the direction attribute.
Use this clause to specify:

¢ that an input or output signal is valid only when another signal takes a certain
value, or

¢ the conditions under which a bidirectional signal is an input, and those under which
it is an output.

Strobe clauses take the form: in|out when [<validityClause> |
The <validityClause> takes the form: <signalName> < TDSstate>

The following is an example of a WGL Signals block with strobe clause for signals dr
and data:

Start Example

signal
cntrl : input;
dr : bidir in when [cntrl D] out when [cntrl U];
data[7..0] : output out when [cntrl D]J;
end
End Example
dutpin

The dutpin attribute specifies the names (and optional numbers) of the pins on the
device-under-test associated with the signal. The dutpin value is an alphanumeric string.

TSSI © 1979-2026

Waveform Generation Language

If a device has multiple pins dedicated to the same signal, or different pins in use when
a bidirectional signal is input or output, more than one pin may be specified. dutpin may
not be specified for groups.

If multiple pins are specified in a multi-bit bus declaration, the mapping is assumed to
be one-to-one between the bus elements and the pins, in a left-to-right, most-
significant-pin to least-significant-pin order. Other distributions of pins to signals
(such as that required for multiplexed pins) can be accomplished by grouping the pin
declarations within parentheses.

This indicates that multiple pins are bound to single-bit bus member.

The following is an example of a WGL Signals block with dutpin attribute defined:

Start Example

signal
clk : input dutpin [c:1];
data[0..7]: bidir dutpin [
(doi, dOo), (d1i, dlo), (d2i, d2o0),
(d3i, d3o0), (d4i, d4o), (d5i, d5o0),
(dei, doo), (d7i, d70)]1;
end

End Example

mux

The mux attribute defines a signal or bus as a multiplexed signal or bus. The signal or
bus receives pattern data from a list of multiplexed parts. If the multiplexed parts are
themselves buses, these buses must be followed by the range of the bus enclosed in
brackets ([]).

The names of the multiplexed parts must be identified for the first time in the current
signal definition; it is illegal to use the names of other signals, groups, or buses that
have been previously defined in the Signals block of the WGL file.

initialp

Each signal definition may have an optional initialp state specified. P states are
resolved to this state the first cycle of the waveform. Any legal TDS state may be
specified. If the initialp clause is omitted, the default is D (FORCE_LO). initialp may
not be specified for groups.

TSSI © 1979-2026

Waveform Generation Language

The following is an example of a WGL Signals block with initialp specified for signals

clk and bus:
Start Example
signal
clk : input initialpl[U];
bus[0..7] : output initialp[X];
end
End Example
Radix

The radix attribute describes the base in which the pattern data for the bus is described
in the Patterns block. The radix attribute can be binary, hexadecimal, octal,
decimal, or symbolic. Only binary and symbolic are legal for single-bit signals.
The default radix is binary when the radix attribute is unspecified.

symbolic radix indicates that identifiers defined in subsequent symbolic blocks may
be used in pattern vectors. Decimal radix may only be specified for buses and groups
with 32 or fewer scalar member signals.

Scan Cells

The Scan Cells block is used to represent internal storage registers of a device that may
be loaded or observed using serial shift scan circuitry. The total number of scan cells
allowed in a single WGL In file is limited to 32767.

It is important to distinguish scan cells from signals. Scan cells do not have direction and
there is no direct association with ATE or DUT pins. Scan cells cannot be referenced in
TimePlates or pattern parameter lists.

The syntax of the WGL Scan Cells block is:

scancell
ScanCellDecl
end

A complete BNF syntactical representation of the Scan Cells block follows:
ScanCells ::= “scanCell” { ScanCellDecl } “end”

ScanCellDecl ::= <cellName> [ScanGroup] [“:” Radix] ;"

23 TSSI © 1979-2026

Waveform Generation Language

ScanGroup ::= “[” [ScanRange | ScanGroupMembers] “]”

ScanRange ::= <bitNumber> “..” <bitNumber>

ScanGroupMembers ::= CellReference { “,” CellReference }

CellReference ::= (<cellName> [Range])

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex” | “hexadecimal” | “symbolic”)

The ScanGroup statement allows you to specify a logical grouping of scan cells. The scan
cells in a group may be from multiple scan chains. Each ScanGroupMember must be
previously defined, unless it is the name of another scan group.

The optional Radix specification for scan groups and registers is used in scan state vectors.
The supported radices are implemented by using the WGL reserved words: binary, hex,
octal, decimal, and symbolic.

An example of a ScanCells block is:

Start Example

scancell

latchA;

latchB;

datareg[0..7]: radix hexadecimal;

group_1[latchA, latchB, datareg[7]]: radix octal;
end

End Example

The Scan Cells block example names scan-able cells within the device. Cells may be
single-bit latches, such as 1atchA, or multi-bit registers, such as datareg. Logical
groups of scan cells, such as group 1, also may be specified.

A complete example of WGL scan structures is provided on later on in this document.

Scan State

Each state declaration in a Scan State block defines the entire state of the set of all scan
cells at some instant in time. The goal of input scanning is to achieve that state; the goal
of output scanning is to observe that state. A scan state vector may be referenced from

24 TSSI © 1979-2026

Waveform Generation Language

Zero or more scan pattern rows. It may take multiple scan chains to load or observe all the
cells in a state.

A binary format of the scan vectors is supported (See “Binary WGL”). This capability
allows you to use binary data from a CAE simulation as input to TDS.

The syntax of the WGL Scan State block is:

scanstate
ScanStateDecl
end

A complete BNF syntactical representation of the Scan State block follows:
ScanState ::= “scanState” { ScanStateDecl } “end”
ScanStateDecl ::= <stateName> “:=" { StateVectorElement } *;”
StateVectorElement ::= <chainName> “(‘““ { <stateString> } “)”

The ScanStateDecl specifies a name for the scan state and the values of all the scan cells
for that state. The <stateName> is an identifier; some special characters may be used if the
<stateName> is enclosed within double quotation marks (““). <stateNames> occupy
their own name space but must be unique among all other states. The StateVectorElements
are assigned by naming the cell, register, cell group, or chain and appending a <stateString>
value in parentheses. The <stateString> is interpreted in the radix of the associated cell
reference similar to the technique used for pattern states. The WGL Out Converter always
generates state vectors using ALLSCAN as the only cell reference. The <chainName> is
an identifier and must be unique among all other scan chain names.

The value of any cell not specified in the scan state declaration is implicitly X, the TDS
state character representing a compare unknown state. The actual value used by a tester to
drive X is technology-dependent and programmed in TDS Test Control Language (TCL).
If that portion of the state is scanned out, the comparison is masked. For more information
on how to use TCL, see the “Test Control Language” document.

Legal characters in the stateString are 0, 1, 7, and X for binary radix, 0-9, A-F, Z, and X
for hexadecimal radix, 0-7, Z, and X for octal radix, and 0-9 for decimal radix.

The following is an example of a Scan State block. The bit order of the scan group
ALLSCAN is the order that the scan cells (and scan registers) are defined in the Scan Cell
block of the WGL file.

Start Example

25

TSSI © 1979-2026

Waveform Generation Language

scanState
statel := latchA(l) latchB(0)
datareg(3F); state2 := latchA(0)
latchB (1) datareg(0l); state3 :=
ALLSCAN (XX00000000); stateX := ;
end

End Example

The stateX state declaration in this example sets up a state of all X (compare unknown)
values.

A complete example of WGL scan structures is provided later in this document.

Scan Chain

The Scan Chain block defines the configuration of a circuit path connecting edge signals
to scan cells and inverters. Each chain is named with an identifier or quoted string that
must be unique among signals, scan cells, buses, scan registers, groups, and other scan
chains.

The syntax of the WGL Scan Chain block is:

scanchain
ChainDecl
end

A complete BNF syntactical representation of the Scan Chain block follows:
ScanChain ::= “scanChain” { ChainDecl } “end”
ChainDecl ::= <chainName> “[” ChainMembers “]” [“:” Radix] *;”
ChainMembers ::= (OutEdgeSignalOnly | ChainMemList)
OutEdgeSignalOnly ::= “, ” ChainMemReference
ChainMemList ::= ChainMemReference { “, ” ChainMemReference }
ChainMemReference ::= (CellReference | “!”)
CellReference ::= (<cellName> [Range |)
Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex” | “hexadecimal” | “symbolic”)

26

TSSI © 1979-2026

Waveform Generation Language

The <chainName> is an identifier and must be unique among all other scan chain names.

The ChainMembers list represents the ordered sequence of scan chain elements where the
implied shift direction is left-to-right. When signal names appear in a ChainMembers list,
the signal names must be the first or last entry in the list.

A signal name appearing at the start of the chain must have been declared input or
bidirectional. A signal appearing at the end must have been output or bidirectional. The
reserved symbol ! indicates state inversion. Scan chains may be members of other chains
as long as the declaration is not recursive.

Either the input edge signal or the output edge signal can be omitted, but if the chain is
directly referenced by a scan pattern row, at least one must be present.

If the Radix is omitted, binary radix is supplied by default.

An example of a Scan Chain block is:

Start Example

Scanchain
chainl [SCl1 IN, datareg[0], latchA, datareg[2], SCl1 OUT] : radix
octal; chain2 [SC2 1IN, datareg([l], !, datareg[7], datareg([5], latchB,

datareg[4], !, datareg[6]];
end

End Example

The Scan Chain block example shows the order of scan cells on two physical chains. The
first and last elements of thechainl cell list are the names of edge signals SC1 IN and
SC1 OUT, which must have been defined previously in a Signals block. chain?2 has an
input signal SC2 IN but no corresponding output signal. Therefore, chain2 may be
used to control the state of the listed scan cells but there is no way to observe their state.
The reserved symbol ! appears twice in the chain? cell list. This indicates that states are
inverted when they shift between datareg[1l] and datareg[7], and between
datareg[4] and datareg[6].

Parallel scan chains are supported, but the scan chains can not be identical.
The following is an example of the legal use of parallel scan chains.

Start Example

waveform tl
scancell

27

TSSI © 1979-2026

Waveform Generation Language

latchl; latch2; latch3; latch4; latchb5; latché6; latch7;
end
scanstate
statel := latchl(0) latch2(0) latch3(0) latch4(0);
state2 := latchl(0) latch2(0) latch3(0) latch4(1l);
state3 := latchl(0) latch2(0) latch3(l) latch4(1l);
stated := latchl(0) latch2(l) latch3(0) latch4(0);
state5 := latchl(0) latch2(l) latch3(0) latch4(1l);
estatel latch5 (1) latch6 (1) latch7 (1) latch8(0);
estate?2 latch5(1) latch6(l) latch7(0) latch8(1);
estate3 latch5(1) latch6(l) latch7(0) latch8(0);
estated latch5 (1) latcho (0) latch7 (1) latch8(1);
estateb latch5(1) latch6(0) latch7 (1) latch8 (0);
estateX := ;
end
signal
clock input;
scanIO bidir;
scanOut :
output; enable
input;
end
scanChain
chainl [scanIO, latchl, latch2, latch3, latch4];
chain3 [latchl, latch2, latch3, latch4, scanIO];
chain2 [latch5, latche6, latch7, latch8, scanOut];
end
timeplate scanTiming period 200ns
clock := input [Ops:D, 50ns:S, 100ns:D];
enable := input [0Ops:S];
scanIO := input [Ops:S];
scanIO := output [Ops:X, 50ns:Q];
scanOut output [Ops:X, 50ns:Q,
90ns:X]; end
pattern patl (clock, enable, scanIO:I, scanIO:0, scanOut)
vector (+, scanTiming):=[1 1 1 - X];
scan (+,scanTiming) :=[1 1 - - -], input[chainl:statel],
output[chain3:estatel];
vector (+, scanTiming):=[1 1 1 - X];
scan (+,scanTiming) :=[1 1 - - -], input[chainl:state2?],
output [chain2:estate2];
vector (+, scanTiming):=[1 1 1 - X];
scan (+,scanTiming) :=[1 1 - - -], input[chainl:state3],

latch8;

28

TSSI © 1979-2026

Waveform Generation Language

output [chain2:estate3];

vector (+, scanTiming):=[1 1 1 - X];
scan (+,scanTiming) :=[1 1 - - -], input[chainl:state4d],
output[chain2:estated];
vector (+, scanTiming):=[1 1 1 - X];
scan (+,scanTiming) :=[1 1 - - -], input[chainl:stateb],
output [chain2:estate5];
end
end

End Example

A complete example of WGL scan structures is provided later in this document.

TimePlates

The TimePlates block is used to define the timing component of the waveforms. The
TimePlates convey the unique kinds of timing that are present in the overall waveforms.

The syntax of the WGL TimePlate block is:

timeplate <timeplateName> TimePlate end

A complete BNF syntactical representation of the TimePlates block follows:
Timeplates ::= “timeplate” <timeplateName> TimePlate “end”
TimePlate ::= “period” TimeReference [“timeset” <tsNumber>] Channels
TimeReference ::= (Time | <variableName>)
Time ::= <timeValue> Unit
Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”
Channels ::= { SignalReference { “,” SignalReference } “:=" Track }
SignalReference ::= <signalName> [Range]
Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”
Track ::= [Direction | [“[” FirstEvent { “,” Event } “]”] ;"
Direction ::= (“input” | “output” | “bidir”) [(“reference” | “timing”)]

FirstEvent ::= “0” Unit “:” <TDSstate> [“’ ” (“edge” | “window”)]

29

TSSI © 1979-2026

Waveform Generation Language

Event ::= TimeReference “:” <TDSstate> [“ "’ (“edge” | “window”)]

<timeplateName> is an identifier used to reference the TimePlate throughout later
portions of the WGL program. An overall timing period is assigned to each TimePlate by
the reserved word period. The TimePlate declaration is a definition of the constituent
parts of the TimePlate.

<variableName> is the name of a variable that has been previously defined in the ExprSet
sub-block of an EquationSheet block. (See “ExprSet” later in this document.)

Each TimePlate is given an overall time period applying to the length of the cycle
following the reserved word period. The period can be a numeric value greater than zero,
or a variable having been previously defined in the ExprSet sub-block of an EquationSheet
block.

NOTE

A variable used in the TimePlates block must have a value that is meaningful
when expressed in units of time.

A TimePlate contains a list of signal Channels. Each Channel can contain one or more
signals, buses, groups, or multiplexed parts. These entities must have been previously
declared in the Signals block. Each Channel associates the signals with a Track.
Conceptually, a Channel is a container for one or more signal names, each of which is
followed by a Track. The Track itself contains the actual information about the shape and
timing of the waveform, and its Direction. The TDSstates that are used must be consistent
with those available for the direction of input or output. (See Table 7 for a list of TDS
state characters.) All the signals that share the channel must also have a compatible
direction.

NOTE

1t is important to note that while multiplexed parts are permitted, multiplexed
signals or buses (those signals or buses tagged with the mux attribute in the
Signals block that receive their timing parameters from multiplexed parts) are
not permitted. In effect, timing is defined for the multiplexed parts, which then
supply data for the multiplexed signal or bus with which they are associated in
the Signals block.

30

TSSI © 1979-2026

Waveform Generation Language

The first event in a Track must have a literal time value of 0. Timing supplied by a variable
is not legal for the first event. Subsequent events can use either a literal time value or a
variable to specify the timing of the event. A variable, if used, must have been previously
defined in the ExprSet sub-block of an EquationSheet block.

The reserved word timeset lets you define a tester-specific timing set name that is
associated with the timing in the TimePlate. The following is an example of a simple
TimePlates block:

Start Example

timeplate read period 250ns timeset 1

clock := input [Ops:D, 50ns:U, 100ns:D, 150ns:U, 200ns:D,
250ns:U];
in = input [Ops:D,170ns:U]J;
out := output [0ps:X,180ns:Q’edge, 220ns:X];
end

End Example

A bidirectional signal can occupy one channel if the direction is specified using the
reserved word bidir, or two channels if the direction is defined using both of the reserved
words input and output. In the first instance, the channel is doing intra-cycle input/output
switching; in the second instance, the channel is doing inter-cycle input/output switching.
These two can be combined to make a maximum of three channels per signal.

Contained within each Track is a comma-separated list of events. Each event consists of
a time value defined by7ime and a TDSstate. For input channels, the TDS force logic
state characters must be used; for output channels, TDS expect logic state characters must
be used; for bidirectional channels, both force and expect TDS state characters may be
used. The TDS state character S indicates that the actual state character is to be
“substituted” into the waveform at that point. The actual state character comes from the
data bit in the corresponding column in a pattern block. In other words, when Track
contains an S state character, the actual state is derived from the pattern data. The TDS
state character P indicates that the state is to be provided from the previous state (from
the previously juxtaposed template). The TDS state character C indicates that the state is
the complement of the substituted state. See Table 7 for a list of TDS logic state
characters.

For output channels, the compare logic states must be used. The TDS state character Q
indicates that the state is to be substituted from the data bit from the corresponding
column in a pattern block. The TDS state character R indicates that the state is the

31

TSSI © 1979-2026

Waveform Generation Language

complement of the substituted state. The optional reserved words edge or window (default)
can follow an output state to indicate edge or window strobing to be produced in the target
tester strobe format.

An example of a typical TimePlates block, including the corresponding signal definitions
in the Signals block and the pattern data defined in the Patterns block, follows. (Note the
use of multiplexed buses.)

Start Example

FastClock is generated using eight multiplexed components.

Databus bus is made up of two separate busses,

busl and bus2.

#

FastClock[edgeO,

rd/ wr

Databus[busl,

end

timeplate writeTP period 80ns
input[0Ops:D,
input[0Ops:?,

edge0:
edgel:
edge?2:
edge3:
edged:
edgeb:
edgeb6:
edge’:

input [Ops
input [Ops
input [Ops
input [Ops
input [Ops
input [Ops

:?
:?
:?
:?
:?
:?

14

4

4

4

14

14

edgel, edge2, edge3, edged4, edgeb,
output;
bus2][0..3] mux bidir;

edgeb6,

edge’7]:

Multiplexed the two four bit

busses to get a byte-wide bus.

rd/ wr: input[Ops:?, 20ns:D, 80ns:?];

input [Ops:

input[Ops:
input[Ops:

input
input

Ops:
Ops:

input [Ops:
input [Ops:
input [Ops:

[
[
[
[
[
[
[
[

B N N R N N R N v

2ns:U, 8ns:D, 10ns:?]; # Clock for data Dbit
10ns:D, 12ns:U, 18ns:D, 20ns:?]; # Clock for data bit
20ns:D, 22ns:U, 28ns:D, 30ns:?]; # Clock for data bit
30ns:D, 32ns:U, 38ns:D, 40ns:?]; # Clock for data bit
40ns:D, 42ns:U, 48ns:D, 50ns:?]; # Clock for data bit
50ns:D, 52ns:U, 58ns:D, 60ns:?]; # Clock for data bit
60ns:D, 62ns:U, 68ns:D, 70ns:?]; # Clock for data bit
70ns:D, 72ns:U, 78ns:D, 80ns:?]; # Clock for data bit

Indicate write cycle

, b5ns:S, 10ns:7?]; # Data bit 0
, 10ns:D, 15ns:S, 20ns:?];# Data bit 1
, 20ns:D, 25ns:S, 30ns:?];# Data bit 2
, 30ns:D, 35ns:S, 40ns:?];# Data bit 3
, 40ns:D, 45ns:S, 50ns:?]; # Data bit 4
, 50ns:D, 55ns:S, 60ns:?]; # Data bit 5
, 60ns:D, 65ns:S, 70ns:?]; # Data bit 6
, 70ns:D, 75ns:S, 80ns:?]; # Data bit 7

pattern loadl (FastClock, rd/_wr, Databus)

vector (+,

end

writeTP)

End Example

(11111111 1 10101010XXXXXXXX) ;

mux input;

32

TSSI © 1979-2026

Waveform Generation Language

You can see in the example that the multiplexed parts do not need be defined as contiguous
sections of the timing track; gaps in the defined timing for the multiplexed parts are
allowed to support the requirements of your particular tester.

The multiplexed parts can occur in any order in the TimePlate block, as can the timing
defined in the timing track. For example, the timing for edge7 and edge? could legally
be defined as:

edge2: input[Ops:?, 70ns:D, 72ns:U, 78ns:D, 80ns:?];

edge7: input[Ops:?, 20ns:D, 22ns:U, 28ns:D, 30ns:?];
As you can see, the timing values are in the reverse order of those shown in the example.

The pattern data (11111111 1 10101010XXXXXXXX) is mapped to the buses and
signals as described in “Patterns” later in this document.

An edge strobe is an instruction to the tester comparator hardware to take an instantaneous
sample of the DUT output, and compare it with the expect data. A window strobe tells
the tester comparator hardware to verify that the expect data is appearing at the DUT
throughout a window of time. If neither reserved word is specified, the event is assumed
to be a window strobe.

When defining a track, make sure that you assign increasing time values for each event
subsequently defined, whether using a constant time value or a variable; the first event of
the waveform must always begin at OpS, and it is unacceptable to define a second event at
20nS and a third event at 15nS. Remember that all event times are relative to the
beginning of the cycle.

TimePlates used with scan pattern rows must satisty certain requirements. Those signals
that terminate scan chains referenced from the same pattern row must have sample states;
that is, signals that appear at the start of a scan chain must have an S state character, and
signals that appear at the end of a scan chain must have a Q state character in their
respective waveform shapes. Any other state characters will be a violation.

The following is an example of a TimePlates block that can be used with scan pattern rows:

Start Example

timeplate runSC period 500ns

SC1 IN := input[OpS:S, 250nS:D];
SC2_IN := input[OpS:S, 250nS:D];
SC1 OUT := output[0pS:X, 250nS:Q];

TSSI © 1979-2026

Waveform Generation Language

SC_CLOCK := input[0pS:U, 250nS:D];
SC_EN := input[0pS:U];
BUS D := output[0pS:X];
ADDR IN := input[0OpS:P];
end

End Example

NOTE

In the above example, only signals containing TDS state characters for

unresolved states (such as S or Q) are scan signals (signals that terminate
scan chains).

You can use variables in the place of literal time values in the TimePlates block. The
variables must be previously defined in a default ExprSet sub-block of an EquationSheet
block. (See “ExprSet” later in this document.)

Variables can be substituted for the TimePlate period value and any event time. You can
intermix literal time values and variables, although the initial event in a time track must
occur at OpS, and it must be expressed as a literal time value.

The following example shows how variables that were defined in an EquationSheet block
can be used in a TimePlate block. The use of variables is highlighted in bold typeface:

Start Example

timeplate tsl period write_cycle

clk := input[0pS:D, 20nS:U, telkl:D, 90nS:U];
ale := input[0OpS:D, t1l:S, t2:D];
RE := input[0OpS:D, 20nS:S, 50nS:DJ;
OE := input[OpS:P, 30nS:S5];
strobe := output[0pS:X, t3:Q0, 90nS:X];
end

End Example

Patterns

The Patterns block is used to define rows of data bits. These rows are also called vectors.
The vectors defined in the Patterns block are to be modulated through the TimePlate that
is associated with each vector. The result of this modulation creates the waveform.

34 TSSI © 1979-2026

Waveform Generation Language

A binary format of the pattern vectors, to be used in place of ASCII pattern data, is

supported. See “Binary WGL” section later in this document. This capability allows you
to use binary pattern data from a CAE simulation as input to TDS. You cannot mix ASCII
pattern vectors and binary pattern data within a Pattern block. However, you can have an

ASCII Pattern block and a binary Pattern block within a WGL file.

The syntax of the WGL Patterns block is:

pattern <patternName>
PatternParameters PatternRows
end

A complete BNF syntactical representation of the Patterns block follows:

Patterns ::= “pattern” PattName “(” PatternParameters “)”
PatternRows “end”

PattName ::= (<patternName> | <patternNameStr>)
PatternParameters ::= PatternParam { “,” PatternParam }
PatternParam ::= SignalReference [“:” (“T” | “O”)]

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

PatternRows ::= { [<vectorLabel> “:”] (Loop | Repeat | ScanRow) }

Loop ::=“loop” [<loopName>] <loopCount>
PatternRows “end” [<loopName>]
Repeat ::= [“repeat” <repeatCount> | (Vector | Call | Offset)

Vector ::= “vector” Address “:=" PatternExpression [TimeComment] “;

Address ::= “(” AddressElement { “,” AddressElement })"

AddressElement ::= (“+” | <cycleNumber> | [Time] | <timeplateName>) Time ::

<timeValue> Unit

Unit ::: (‘Cps’ﬁ ‘Cns9’ CCuS” | Gﬂms Sec”

”|‘6

PatternExpression ::= “[” { (<stateString> | <patternldentifier>) } “]”

35

TSSI © 1979-2026

Waveform Generation Language

TimeComment = “(” Tlme “)n
Call ::= “call” <subroutineName> “()” ;"
Offset ::= “skip” Time “;”

ScanRow ::= “scan” Address “:=” ScanRowElement { “,” ScanRowElement } ;”

9

ScanRowElement ::= (PatternExpression | ScanRun)
ScanRun ::= ScanDir “[”” <chainName> *“:” <stateName> *“|”
ScanDir ::= (“input” | “output” | “feedback™)

Multiple Pattern blocks are allowed in WGL and are used to describe a way of partitioning
a test program into pattern bursts in the target tester.

<patternName> is a user-defined name such as Group ALL.

<patternNameStr> is a user-defined name such as “Group+two”. (String notation allows
the use of characters not otherwise permitted.) The <patternName> and <patternNameStr>
user-defined names are stored in the TDS WDB. Third party tools should also store them
or pass them through to the target tester program.

The PatternExpression defined for each identifier must contain legal pattern
<stateString>s. The number of bits in the PatternExpression must be the same as the
number of bits in the corresponding signal, bus, group, or multiplexed signal or bus that is
associated with it.

PatternParameters is a parentheses-enclosed list of signal names that have already been
defined in the Signals block. The PatternParameters are used to map signals, buses,
groups, and multiplexed signals or buses (defined in the Signals block) to columns in the
PatternExpressions. If multiplexing is used for signals or buses, the pattern bits are
combined under the control of the associated radix, in exactly the same manner that the
pattern bits are controlled for non-multiplexed buses. For multiplexed parts, the binding
order of the pattern bits is left-to-right as specified in the multiplexed signal definition in
the Signals block. Each PatternParam in the parameter list corresponds in order of
occurrence to columns of data in each vector statement.

Each column should have a <stateString> bit delimited by a space. For a column with a
multi-bit signal (buses, groups, multiplexed), there should be <stateString> bits without
space delimiters. The number of bits are as specified in the Signals block. For instance, if
a group is specified to have 3 signal members, then the number of <stateString> bits
would be 3, and the <stateString> bits should not have spaces between each two bits (for

36

TSSI © 1979-2026

Waveform Generation Language

instance, 000, 101, 111, etc). This convention anplies to groups, buses, and multiplexed
signals.

For example, if one of the identifiers in the PatternParameters has a group, clocks, in the
column, the <stateString> bits of clocks should not have spaces between bits to
represent one column, clocks.

signal
sigl : input;
cl : input;
c2 : input;
c3 : input;

clocks [cl, c2, c3];

timeplate tsl period 10ns
sigl := input[O0pS:P, 5nS:S];
clocks := input[0pS:D, 5nS:U];
end

pattern group ALL (sigl, clocks)

vector (0, tsl) := [0 111 71;
vector (1, tsl) := [1 000];
vector (2, tsl) := [0 101 71;

end

PatternRows are definitions of rows of data bits used to supply data to waveforms when
modulated through a TimePlate, as defined in the TimePlate block.

The optional TimeComment provides a mechanism for binding a time to a Vector. It is
stored in the database as a comment only.

A Vector consists of an Address and an associated pattern expression. The simplest form
of an Address is an integer cycle number. A plus sign (+) can be used as an address to
automatically increment the cycle number from the previous row. The starting time of the
cycle may also appear in the address. If a <timeplateName> is mentioned in an Address,
it must reference an existing TimePlate.

The <patternldentifier> can be used in subroutines, pattern blocks, or scan state vectors as
a shorthand for PatternExpression when the radix of the associated signal, bus, group, or
scan element is set using the reserved word symbolic. See the Symbolics section in this
chapter for more information on how to use the reserved word symbolic.

37

TSSI © 1979-2026

Waveform Generation Language

The following vector declaration uses an integer address (O), starting time of the cycle
(0pS), the TimePlate name with which the vector is associated (t1), and the pattern
data([1 ZZZZ%ZZ%Z%Z]).

vector (0, QOpS, tl) := [1 2272227227 1];

The vector declaration below uses only automatic increment address (+) and the pattern

data([1- 1111111100000000 1 -7).
vector (+) := [1- 1111111100000000 1 -],

Vectors and subroutine calls may have optional repeat counts. To cause the vector to be
used more than once, the reserved word repeat and a repeat count are used.

The following is an example of a simple WGL Patterns block:

Start Example
pattern group ALL (CO,C1,C2,C3,C4,C5,C6,C7,C8)

vector (0, TimeSet0 0) := [0 0 01 101 10];
vector (1, TimeSetl 0) =[11100111111];
vector (2, TimeSetl 1) := [0 1 1 011010];
vector (3, TimeSet2 0) := [1 1 111 1011];
vector (4, TimeSet3 0) := [0 0 0 0O 0O 0111 1];
vector (5, TimeSet3 1) := [0 0 0 01 0100 1];

end

End Example

The example below i1s a WGL Patterns block with a repeat statement that describes a
waveform which has a periodic clock for two cycles and an 8-bit data bus that has a value
of all Hi-Z for the first cycle, and a value of 0001 1010 for the second cycle. The repeat

statement causes third through sixth cycles of the waveform to all have the same value on
the data bus.

Start Example

signal

clock : input;

data[0..31] : input radix binary;
end

timeplate tl period 200ns
clock := input[Ops:D, 100ns:S, 150ns:D];

38

TSSI © 1979-2026

Waveform Generation Language

data := input[Ops:Z, 120ns:S] radix binary;
end

pattern loadl (clock, data[8..15])

vector (0, OpS, tl) := [1 ZZ727Z7zzZZZ] (100ns);

vector (1, 200nS, tl) := [1 00011010] (300ns);

repeat 4 vector (3, 200ns, tl) := [1 00011010 1;
end

End Example

Bidirectional patternParameters always require twice the number of pattern columns to
account for input and output directions. If a bidirectional single-bit signal is mentioned as
a pattern parameter, two adjacent bits are required (no space between them is allowed). If
a bidirectional signal is mentioned with an : T or : O, this counts as one parameter per
occurrence. A space is required between them if both directions are used. Bidirectional
buses have all of their input pattern bits mentioned first, followed by the output pattern
bits. [fan: I or :0 is used on a bidirectional bus, this counts as one pattern parameter,
and at least one space is required as a separator.

The number of bits for each pattern parameter must be the same as the width of the signal,
bus, group, or multiplexed signal or bus. The number of bits for a bus is the difference
between its upper and lower bounds, plus one. The number of bits in a group is the sum
of the number of bits of all the group members. The number of bits for a single direction
multiplexed bus is the width of the bus times the number of multiplexed parts. The
number of bits for a bidirectional multiplexed bus is the width of the bus times the number
of the multiplexed parts times two.

The following is an example of a WGL Patterns block with bidirectional bus pattern
spacing:

Start Example

signal
foo[0..7] : bidir radix binary;
fee[0..7] : bidir radix
hexadecimal; fum[O0..7] : bidir

radix hexadecimal; end

pattern loadl (foo, fee, fum:I, fum:0)
vector (+) := [10101010-—-=-==-——- FF-- F- -
=17

End Example

39

TSSI © 1979-2026

Waveform Generation Language

The : T and :0 can only be used with bidirectional signals, buses, groups, multiplexed
signals or buses, or parts of multiplexed signals or buses.

If the number of the pattern bits in the vector statement does not equal the sum of the bits
assigned to the buses defined in the Signals block (that is, the bus range, see “Buses”), an
error is reported.

The reserved word call invokes a pattern subroutine, as indicated by the
<subroutineName>. The rows of the subroutine are treated exactly as if they had been
included in-line at the point of the call. Like vectors, calls may have optional repeat counts
specified.

The following is an example of a WGL Patterns block with subroutine call foo:

Start Example
pattern loadl (clock, data[8..15])

vector (0, OpS, tl) := [1 ZZZZ7Z72Z7Z 1];
call foo():;
vector(+, tl) := [1 00011010 7];

end

subroutine foo () vector (tl) :=
[1 00011111 1;
end

End Example

The reserved word loop allows a sequence of other vectors, calls, and loops to be repeated
a specified number of times. Loops can be nested to any depth. Loops have optional
names that have no significance other than as a commentary tag.

The following is an example of a WGL Patterns block with loop 1oopName:

Start Example

pattern loadl (clock, data[8..15])

vector (0, OpS, tl) := [1 ZZZzZz727];
loop loopName 3 call foo();
vector(+, tl) := [1 00011010 1];

end loopName end

End Example

The reserved word skip provides for the declaration of a time period when the waveform
state is unspecified. Signal states and event timing are suppressed during the skipped
period. The following is an example of a WGL Patterns block with a skip of 400nS:

40

TSSI © 1979-2026

Waveform Generation Language

Start Example

pattern loadl (clock, data[8..15])

vector (0, OpS, tl) : [1 2227227227 1;

vector (+, tl) := [1 00011010 1;

skip 400nS;

vector (+, O0pS, tl) := [1 ZZZ2727Z2727Z27Z];

vector (+, tl) := [1 00011010 7];
end

End Example

Scan pattern rows may appear in pattern blocks freely intermixed with the other row types. Each row
represents an arbitrary number of cycles dependent on the lengths of the scan chains that it references.

Note that the scan state defines the values of all scan cells in the device. Only those scan cells on the
indicated scan chain(s) are loaded or observed by a particular scan row. Other scan cells not referenced
by a chain in the pattern row are not affected by the row. Multiple combinations of chain, state, and
direction may appear in each scan row. This provides for parallel scan chains or simultaneous loading
and observing of a single chain. It is illegal, however, for a scan row to specify the same chain more
than once if the direction of the chain is the same but state values associated with the chain are different.

The following is an example of parallel scan chains:

Start Example

pattern patl (clock, enable, scanIn, scanOut, scanInl, scanOutl)
vector (+, scanTiming) := [1 1 1 1 1 1];
scan (+,scanTiming) = [11----],
input[chainl:statel],
output [chain2:estatel],
input[chainll:state3],
output[chainl2:estate3] ;

vector (+, scanTiming) := [1 1 1 1 1 1];
vector (+, scanTiming) := [1 1 1 1 1 1];
end

End Example

41 TSSI © 1979-2026

Waveform Generation Language

It is illegal for a scan chain with no input edge signal to follow the reserved word input. It is illegal for
a scan chain with no output edge signal to follow the reserved word output.

The reserved word feedback indicates that the signals appearing on the chain output should be directed
back into the chain input while simultaneously comparing against the specified scan state vector.
Chains referenced in a feedback clause must have both an input and an output signal. For more
information, see “Scan Chain”.

It is important to make certain that signals that terminate scan chains have the proper state character
supplied to them, either from parallel pattern data or from the scan chain associated with the scan run.
The following example illustrates a common error made in using scan chains.

Start Example

waveform tl

scancell
latchl; latch2; latch3; latch4; latch5;
latch6; latch7; latchS8;
end
scanstate
statel := latchl(0) latch2(0) latch3(0) latch4(0);
state?2 := latchl(0) latch2(0) latch3(0) latch4(1l);
estatel := latch5(1) latché6(l) latch7(l) latch8(0); estate2 :=
latch5 (1) latch6(l) latch7(0) latch8(l); estate3 := latchb5(1)
latch6 (1) latch7(0) latch8(0);
end
signal
clock : input;
scanIO : bidir;
scanOut : output;
enable : input;
end
scanChain

’

chainl [scanIO, latchl, latch2, latch3, latch4]
chain3 [latchl, latch2, latch3, latch4, scanIO];
chain?2 [latch5, latcho, latch7, latch8, scanOut];

42 TSSI © 1979-2026

Waveform Generation Language

end

end
timeplate scanTiming period 200ns

clock := input [Ops:D, 50ns:S, 100ns:D];
enable := input [Ops:S];
scanIO := input [Ops:S];
scanIO := output [Ops:X, 50ns:Q];
scanOut := output [0Ops:X, 50ns:Q, 90ns:X];
end
pattern patl (clock, enable, scanIO:I, scanIO:0, scanOut)
vector (+, scanTiming) :=[1 1 1 - X];
scan (+,scanTiming) :=[1 1 - - -], input[chainl:statel],
output[chain3:estatel];
end

End Example

43

TSSI © 1979-2026

Waveform Generation Language

Edge signals terminating scan chains that are used in the scan runs of a scan pattern row
must contain a sample state of the appropriate directionality in the TimePlate referred to by
the scan pattern row. Signals that appear at the start of a scan chain (input) must include an
S state character, and signals that appear at the end of a scan chain (output) must include a
Q state character in their respective waveform shapes. A given scan chain may appear in
some, but not all, scan pattern rows in a WDB. A single TimePlate may be used in all scan
pattern rows, as long as the state of the edge signal in the scan chain is supplied by the
parallel pattern data of the pattern rows that do not use the scan chain in a scan run.

In the parallel scans chain example, the edge signal scanOut, which is a part of the scan

chain chain?2, contains a sample state (Q) in the TimePlate scanTiming. Problems
arise because the associated pattern column contains the placeholder character (-). In this
case, because the edge signal contains the sample state Q, and the Q state requires that a
state exists to be sampled, the associated parallel pattern data must supply that state. The
example does not, and hence is erroneous.

To repair the error you must either supply a state value in the parallel pattern data, or use
chain?2 instead of chain3 as the terminal chain in the scan run. The remedial sections
of the examples below are highlighted in bold type face.

An example of state character supplied in the parallel pattern data is:

Start Example

pattern patl (clock, enable, scanIO:I, scanIO:0, scanOut)

vector (+, scanTiming) :=[1 1 1 - X];
scan (+, scanTiming) :=[1 1 - - X], input[chainl:statel],
output[chain3:estatel];
end
end

End Example
An example of state characters supplied by a scan chain is:

Start Example

pattern patl (clock, enable, scanIO:I, scanIO:0, scanOut)
vector (+, scanTiming) :=[1 1 1 - X];
scan (+, scanTiming) :=[1 1 - - -], input[chainl:statel],

output [chain3:estatel], output[chain2:estatel];

end
end

44

TSSI © 1979-2026

Waveform Generation Language

End Example
A complete example of WGL scan structures is provided later in this document.

Subroutines

The Subroutines block is used to define pattern sequences that are called repeatedly from a
Patterns block.

The syntax of the WGL Subroutines block is:

subroutine <subroutineName> PatternRows end
A complete BNF syntactical representation of the Subroutines block follows:

Subroutines ::= “subroutine” <subroutineName> “()”
PatternRows “end”

PatternRows ::= { [<vectorLabel> “:”] (Loop | Repeat | ScanRow) }

Loop ::=“loop” [<loopName>]| <loopCount>
PatternRows “end” [<loopName>]

Repeat ::= [“repeat” <repeatCount> | (Vector | Call | Offset)

Vector ::= “vector” Address “:=" PatternExpression [TimeComment] ;”

Address ::= “(” AddressElement { “,” AddressElement })"

AddressElement ::= (“+” | <cycleNumber> [Unit] | <timeplateName>)

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”

PatternExpression = “[” { (<stateString> | <patternldentifier>) } “]”
TimeComment ::= “(” Time “)”

Time ::= <timeValue> Unit

Call ::= “call” <subroutineName> “()” ;"

Offset ::= “skip” Time “;”

ScanRow ::= “scan” Address “:=” ScanRowElement { “,” ScanRowElement } *;

ScanRowElement ::= (PatternExpression | ScanRun)

45 TSSI © 1979-2026

Waveform Generation Language

ScanRun ::= ScanDir “[”” <chainName> *“:” <stateName> “]”
ScanDir ::= (“input” | “output” | “feedback™)

<subroutineName> is a user-defined name, such as patterns 1, thatis used to define a
specific subroutine. PatternRows are definitions of rows of data bits used to supply data to
waveforms when modulated through a TimePlate, as defined in the TimePlate block. The
interpretation of pattern state information is the same as in the most recently preceding
Patterns block; the pattern parameter from the preceding Patterns block also defines the
column interpretation in the subroutines that follow.

You define the contents of a subroutine in the Subroutines block, and access the subroutine
using the reserved word call. When you call the subroutine you defined in the Subroutines
block, WGL jumps to the beginning of the corresponding Subroutines block. On completion
of the subroutine, WGL returns to the part of the WGL code immediately after the call
statement.

An example of a WGL Subroutines block is:

Start Example

subroutine foo ()
vector(tl) := [1 00011111]; end

End Example
The following is an example of a WGL call statement for the subroutine defined in the
example above:

Start Example
pattern loadl (clock, data[8..15])

vector (0, OpS, tl) := [1 ZZZZ7Z72Z7Z 1];
loop loopName 3
call foo();
vector(+, tl) := [1 00011010 7;
end loopName
end

End Example

Symbolics

The Symbolics block is used to associate an identifier with a bit pattern for a specific signal,
bus, group, scan cell, scan register or scan group, making it easier to specify hardware
operation codes. Also, if a single-bit signal, bus, or group was defined with a symbolic radix,
a Symbolics block must be created that corresponds to the definition.

46

TSSI © 1979-2026

Waveform Generation Language

The syntax of the WGL Symbolics block is:

symbolic SigReference [SymDirection] Radix
SymbolicAssignment end

A complete BNF syntactical representation of the Symbolics block follows:

Symbolics ::= “symbolic” SignalReference [SymDirection] Radix
SymbolicAssignment “end”

SignalReference ::= <signalName> [Range]
Range ::= “[” <bitNumber> [“..” <bitNumber> | “]”

SymDirection ::= (“input” | “output”) [(“reference

’)|‘C

timing”) |

Radix ::= “radix” (“binary

9’|¢6

octal” | “decimal” | “hex” | “hexadecimal” | “symbolic”)

13 29

SymbolicAssignment = [<patternldentifier> | =" PatternExpression
PatternExpression ::= “[” { (<stateString> | <patternldentifier>) } “]”

Symbols defined in the Symbolics block can be used in place of the corresponding pattern
states in the vectors in the Patterns block.

Each Symbolics block refers to the name of a previously defined signal, bus, group, scan
cell, scan register, or scan group. The reserved word input or output must be omitted for
scan elements. Signals defined using the reserved word bidir may be associated with two
Symbolics blocks. Radix, the radix of the Symbolics block, must also be specified.
PatternExpressions within the block are interpreted in the specified radix.

The <patternldentifier> can be used in subroutines, pattern blocks, or scan state vectors as a
shorthand for PatternExpression when the radix of the associated signal, bus, group, or scan
element is set using the reserved word symbolic. If a bit pattern is to be entered for which
there is no defined identifier, the pattern may be entered in the radix defined in the
Symbolics block.

The PatternExpression defined for each identifier must contain legal pattern stateStrings.
The number of bits in the PatternExpression must be the same as the number of bits in the
corresponding signal, bus, or group that is associated with it. See “Scan State” for more
information about stateStrings.

The following is an example of a WGL Symbolics block, and a symbolic radix assignment
in pattern block group in:

Start Example

47

TSSI © 1979-2026

€,

Waveform Generation Language

signal

inst [0..7] : input radix symbolic;
foo : input;
bar : output;

end

symbolic inst input radix binary

add := [000000017;
sub := [000000107];
mul := [000000117];
div := [000001007;
xor := [100000007;
1sl := [110000007;
asl := [1110000071;
end

pattern group in (foo, inst, bar)

vector (+) := [1 add 07];

vector (+) := [0 div 17];

vector (+) = [1 add 17];
end

End Example

All the pattern expressions that make up a Symbolics block must be unique. All the
identifiers must also be unique. Note that WGL supports partially specified symbolic
blocks. It is possible to have identifiers without pattern expressions or pattern expressions
without identifiers.

Pattern data that does not match one of the defined symbols may be entered directly in the
pattern block in the table radix. If an identifier could also be a legal pattern expression, it is
recognized as an identifier Decimal radix may only be used with buses and groups with 32
or fewer scalar member signals.

The following is an example of Symbolics block with unspecified pattern expressions and
identifiers:

Start Example

signal
data[0..7]: input radix symbolic;

end

symbolic data input radix hex

GO := [00];
STOP := [FF 1;

48

TSSI © 1979-2026

Waveform Generation Language

IDLE = [A2];
Missing = [1;

end

pattern sample (data)
vector (+) := [GO 17
vector (+) := [IDLE 1];
vector (+) := [01 1;
vector (+) := [3B 1;
vector (+) := [STOP];
end

End Example

Equation-Specific Program Blocks

This section discusses the specific syntax for each of the equation-specific program blocks
that have not been discussed previously. The WGL equation-specific program blocks:

EquationSheet
EquationDefaults

Use the equation-specific program blocks to assign variable timing values for edge
placement and current, voltage, and frequency level values for signal strength. You enable
equation support by programmatically declaring an EquationSheet block containing at least
one ExprSet sub-block. The ExprSet sub-block contains a list of variables that you create,
paired with their assigned constant values, or expressions used to determine the variable
value.

You can add more control over which variables are used when you create a test program by
declaring the optional EquationDefaults block. The EquationDefaults block specifies which
sets of expressions or constant values assigned to variables in the ExprSet sub-blocks are
used during subsequent transactions with TDS products that interact with a WDB. Third
party tools can follow this rule to output the equation variables.

The following example shows the structure of the equation-specific program blocks in a
WGL file, and the order in which they are declared. While some of the programming blocks
used in the example are optional, the example portrays all possible equation-specific blocks
and sub-blocks.

Start Example

equationsheet <sheet name>

49

TSSI © 1979-2026

Waveform Generation Language

exprset <expression set name>
expression information goes here

end

exprset <expression set name>
expression information goes here

end

end

equationsheet <sheet name>
exprset <expression set name> expression information goes here
end

end equationdefaults
default information goes here
end

End Example

The ExprSet sub-block must be contained within an EquationSheet block and cannot be used
as a stand-alone block.

NOTE

The right side of the equation, delimited by the equal sign (=) on one side and
the terminating newline character, cannot exceed 247 characters. The total
includes white spaces.

In the following manual sections, the equation-specific program blocks are presented in the
order that you would be most likely to use them when creating a WDB that includes
equations.

EquationSheet

EquationSheet blocks allow for the overall organization of variable declarations. An
EquationSheet block contains one or more ExprSet sub-blocks.

The ExprSet sub-blocks contain variable declarations, that is, expressions or constant values
assigned to variable names. To support equations in your WGL file, the WGL file must
contain at least one EquationSheet block with at least one ExprSet sub-block. The number of
EquationSheet blocks in a WGL file cannot exceed 100.

EquationSheet blocks and ExprSet sub-blocks must be declared before they are referenced
in an EquationDefaults block. For this reason, it is a good idea to declare all EquationSheet

50

TSSI © 1979-2026

Waveform Generation Language

blocks before you declare any EquationDefaults blocks. Additionally, the EquationSheets
blocks must be declared before the TimePlate block.

The syntax of the WGL EquationSheet block is:

equationsheet <equationSheetName> ExpressionDecl end

A complete BNF syntactical representation of the EquationSheet block follows:

EquationSheet ::= “equationsheet” <equationSheetName>
{ ExpessionDecl } “end”

ExpressionDecl ::= “exprset” <exprSetName> { VariableDecl } “end”

The identifier <equationSheetName> is used to name the specific instance of an Equation
Sheet block of the WGL program; it is the unique name of that block.

An <equationSheetName> must be unique within a WGL file and must conform to the naming
conventions for identifiers, as described in “Identifiers” on page 6-6. An <equationSheetName>
has the same length limitations as signal name for your tester and automatic truncation is
performed when EquationSheet names are too long. Any <equationSheetName> that is
identical to a WGL reserved word (See the WGL reserved word list earlier in this document)
is flagged by the WGL parser as illegal. You can still use an <equationSheetName> that is the
same as a WGL reserved word by enclosing the name in double quotation marks ().

The identifier <exprSetName> refers to an ExprSet sub-block declared within the
EquationSheet block of the WGL program. (For details of the WGL constructs contained in
the ExprSet sub-block, see “ExprSet”.) The <exprSetName> identifier must conform to the
naming conventions for identifiers, as described in “Identifiers”.

The following is an example of two EquationSheet declarations:

Start Example

equationsheet AC
exprset SETI1

tclkl := tclk + 10nS;
write cycle := tclkl*3;
tclk := 35nS;
Vcec := 4.5V;

end

exprset SET2
tclkl := tclk + 20nS;
write cycle := tclkl*2;
tclk := 40nS;
Vee := 5.0V;

TSSI © 1979-2026

Waveform Generation Language

end
equationsheet AC control
exprset Control set
Vih := Vcc-0.5V;
Vil := Vih-3.0V;
end
end

End Example

ExprSet

ExprSet sub-blocks are contained within EquationSheet blocks. They contain precise
assignments of expressions and constant values to variables.
The syntax of the WGL ExprSet sub-block is:

exprset <exprSetName>
{ VariableDecl }
end

A complete BNF syntactical representation of an ExprSet sub-block follows:

VariableDecl ::= <variableName> “:=" [Expression | [“[*“ MinMax “]”] *;”

b

Expression ::= Constant | <variableName>
| Expression Operator Expression
| “(*“ Expression “)” | (“4+” | “-””) Expression | BuiltInVar
| BuiltInFunc (Expression [, Expression])
| (“++ | “--") Expression | Expression (“++ | “--")

BuiltInVar ::=“PI” | “E” | “DEG”

BuiltInFunc ::= “ACOS” | “ASIN” | “T AAN” | “CEIL” | “COS” | “COSH”
| “EXP” | “AFBS” | “FLOOR” | “LOG’ | “LOG10”
“SIN” | “SINH” | “SQRT” |A “NT” | “TANH” | “ATAN2”
| “POW”

Operator = (“_|_” | 6 | 13 33 | “/” | CEA)
Constant ::= (<integerValue> | <floatingPointValue>) [Scale] [EqUnit]
Scale = (“p” | “n” | “uw | “mn)

EqUnit ::: (“A” | 6‘V” ‘ “SB’ | “H’?)

52 TSSI © 1979-2026

Waveform Generation Language

MinMax ::= Constant | “,” Constant | Constant “,” Constant

An ExprSet sub-block is contained within an EquationSheet block and must have a unique
name, the <exprSetName>, within the context of the EquationSheet block that contains it.
Multiple ExprSet sub-blocks can be declared within an EquationSheet. Multiple ExprSet
sub-blocks allow for the assignment of more than one value or expression to a variable.

The ExprSet sub-block begins with the reserved word exprset followed by the
<exprSetName>, which must conform to the naming conventions for identifiers, as
described in “Identifiers”. The body of the ExprSet sub-block contains a list of
<variableName>s and the values assigned to them. The sub-block ends with the block
terminator, end.

The the number of ExprSet sub-blocks within a EquationSheet block in a WGL file cannot
exceed 100. An <exprSetName> must conform to the same length limitations as signal

names for your tester; automatic truncation is performed when ExprSet sub-block names are
too long.

An <exprSetName> is case sensitive and must begin with an alphabetic character.
<exprSetName>s that are identical to WGL reserved words (see the WGL reserved word
list) are flagged by the WGL parser as illegal. You can still use a name that is the same as
a WGL reserved word by enclosing the name in double quotation marks (“).

While no two <equationSheetName>s can be identical, there can be multiple identical
<exprSetName>s and <variableName>s, provided that identical <exprSetName>s are not
contained in the same EquationSheet block. Multiple identical <variableName>s are also
legal, provided that they are not contained in the same ExprSet sub-block.

The following example shows an illegal usage of <exprSetName>s and <variableName>s.

Start Example

THE FOLLOWING USE OF IDENTICAL EXPRSET NAMES IS ILLEGAL

equationsheet Sheet 1 exprset

worst
Veccl:= 4.5V;
TempDegCl := 70;
Texternl := 10nS;

end

exprset best
Vececl := 5.75V;
TempDegCl := 0;
Texternl := 0nS;

end

53

TSSI © 1979-2026

Waveform Generation Language

exprset worst {THIS EXPRSET NAME IS ILLEGAL BECAUSE IT HAS ALREADY
BEEN USED IN THIS EQUATIONSHEET BLOCK}
Vecel:= 3.0V;
TempDegCl := 90;
Texternl := 50nS;
Vececl:= 5.0V { THIS VARIABLE NAME IS ILLEGAL BECAUSE IT OCCURS IN THE
SAME EXPRSET SUB-BLOCK AS AN IDENTICALLY NAMED VARIABLE.} end
equationsheet Sheet 2 exprset

worst
Vece2:= 4.5V;
TempDegC2 := 70;
Textern2 := 10nS;
end

exprset best

Vece?2 := 5.75V;
TempDegC2 := 0;
Textern2 := 0nS; end
End Example
Variables

The <variableName> identifier gives a unique name to a variable that can then be referenced
in other parts of the WGL file. The identifier <variableName>, must conform to the naming
conventions for identifiers, as described in “Identifiers”.

Once you assign a value to a <variableName> (or declare the variable) in an ExprSet sub-
block, you can reference the <variableName> in the TimePlates block to specify the cycle
period or to specify times at which events within TimePlates occur. You can also reference
<variableName>s in the TimingSets block to specify a time assignment to a timing
generator. Additionally, a <variableName> can be referenced by expressions within
ExprSet sub-blocks in EquationSheet blocks other than the one in which the variable was
declared.

All variable declarations within an EquationSheet block are unique to that EquationSheet
block. A variable of the same name cannot be declared in another EquationSheet block, but
it can be declared again in another ExprSet sub-block contained in the same EquationSheet
block. In fact, that is the main purpose of multiple ExprSet sub-blocks: to provide a way
for you to reassign the value of a variable by naming it in another ExprSet sub-block and
giving it a different value.

Any <variableName> declared in any ExprSet sub-block in the WGL file can be referenced
in other expressions in the same EquationSheet block or in other EquationSheet blocks.

54

TSSI © 1979-2026

Waveform Generation Language

Forward referencing of variables is allowed. This means that you can reference variables
even though those variables are not declared until later in the WGL file.

When you declare a variable in an ExprSet sub-block, the variable name is added to a
conceptual list of all the variable names that are declared in all of the ExprSet sub-blocks
contained in an EquationSheet block. The set of variable names on the list is actually
associated with the EquationSheet block containing the ExprSet sub-block in which the
variable was declared. The value assigned to the variable, however, is associated with the
ExprSet sub-block.

A conceptual model of the arrangement of equation sheet/expression set data contained
within the WGL, follows:

WGL

EQUATION SHEET <n>

EQUATION SHEET 2

EQUATION SHEET 1

EXPRESSION SET <n>
EXPRESSION SET 2

EXPRESSION SET 1

Variable Description | Expression Value Constraints
‘clockiper ‘ ‘clock cycle ‘ ‘250ns ‘ ‘250ns ‘ ‘ ‘
edgel [clock pulsel ‘5OHS ‘ ‘50nS ‘ ‘ ‘
edge2 [clock off1 ||| || || ‘
edge3 |clock pulseZI ‘ ‘ ‘ ‘ ‘ ‘ -
‘edgell ‘ ‘clock off2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ | | —
‘edgeS ‘ ‘clock pulse3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ||

Figure 2. Conceptual model of equation sheet data organization.

55

TSSI © 1979-2026

Waveform Generation Language

For example, if you have an EquationSheet block that contains three ExprSet sub-blocks,
and in each sub-block you assign values or expressions to two of the variables, the
EquationSheet block will have a list of six unique variable names associated with it. On
any given ExprSet sub-block, the two variables to which you assigned values have valid,
assigned values; the other four variables associated with the EquationSheet block are
unassigned, having no value associated with them.

This becomes important when you use the EquationDefaults block to specify which ExprSet
sub-block from an EquationSheet you want to use to assign values to variables. Since all the
variables from all of the ExprSet sub-blocks are on the EquationSheet variable name list,
you must make certain to explicitly re-declare all variables from all of the ExprSet sub-
blocks contained in the EquationSheet block mutually in every other block. Any variable
name that is on the list but has no explicit value assigned to it in the active ExprSet sub-
block is given an “unassigned” value. While it is syntactically permissible to have
unassigned variables in your WGL file, it is a bad practice to do so; if you use any variable
that is not explicitly assigned a value in an ExprSet sub-block, and that sub-block is named
in the EquationDefaults block, the variable will violates the WGL standard and will cause
error in the target tester test program. When you use the TDS WGL In Converter to convert
your WGL file to a WDB, this violation will be caught. For more information on how to use
the EquationDefaults block, see “EquationDefaults”.

There is no limit to the number of variables within an ExprSet sub-block. A <variableName>
must conform to the same length limitations as signal names for your tester; automatic
truncation is performed when a <variableName> is too long.

<variableName>s are case sensitive and must begin with an alphabetic character.
<variableName>s that are identical to WGL reserved words should be flagged by any WGL
parser as illegal. You can still use a name that is the same as a WGL reserved word by
enclosing the name in double quotation marks (“ ™).

An example of a valid ExprSet sub-block variable is: volt := 5.5V
where volt is the variable to which a value is assigned.
Constants

A Constant can be either an integer (<integerValue>) or a floating-point number
(<floatingPointValue>).

An example of a valid ExprSet sub-block constant is:

t := 3 where 3 is the constant value assigned to the variable t.

56

TSSI © 1979-2026

Waveform Generation Language

Expressions

An expression is a formula for combining variables, constants, or other expressions in a
mathematical way. An expression can be something as simple as a constant value, a
reference to a variable, or a combination of constants and variables related to each other
with mathematical operators (such as +, -, *, and /).

An example of a valid ExprSet sub-block expression is:

clock := 10nS*t
where 10nS*t is the expression whose calculated value is assigned to the variable clock.
Operators and Incrementors

The ExprSet sub-block supports a list of standard mathematical operators that you can use
when writing an expression.

Table 2 is a list of operators, listed in order of decreasing precedence. Operators with the

same level of precedence are grouped and separated from operators of differing precedence
by bold lines:

Table 2. Equation Operators

Operator Operation

*

multiplication

/ division

+ addition

- subtraction
A exponent

Built-ins

You can use any of a number of predefined variables or functions in the ExprSet sub-block.
The predefined variables (BuiltInVar) are listed in the following table:

Table 3. Built-in Variables

WGL BuiltinVar Value

E 2.718281828459045523536

TSSI © 1979-2026

Waveform Generation Language

DEG 57.2957795130823208768

PI 3.14159265358979323846

The following example shows the use of a built-in variable, PI:
Start Example

hi volt := low * PI

End Example

where the variable hi volt will receive the value of another variable, 1ow, multiple by
3.14159265358979323846.

The following table lists the built-in functions (BuiltInFunc) supported in the ExprSet sub-

block:
Table 4. Built-in Functions
WGL BuiltinFunc Performs Operation
ACOS arc cosine
ASIN arc sine
ATAN arc tangent
CEIL ceiling (round up to integer)
COSs cosine
COSH hyperbolic cosine
EXP exponential *
FABS absolute value
FLOOR floor (round down to integer)
LOG natural logarithm
LOG10 base 10 logarithm
SIN sine
SINH hyperbolic sine

58 TSSI © 1979-2026

Waveform Generation Language

SQRT square root

TAN tangent

TANH hyperbolic tangent
ATAN2 arc tangent y/x
POW xY

The following example shows the use of a built-in function, LOG:
Start Example

sim time := LOG (clock)

End Example

where the variable sim time will receive the value of the natural logarithm of another
variable, clock.

Annotations

Annotations are supported and may be attached to variables in the ExprSet sub-block
through the use of curly braces ({ }). Only one annotation is allowed per variable. If a
variable is encountered in multiple ExprSet sub-blocks with different annotations, the
contents of the annotations are concatenated in the resultant WDB. For identical
annotations, only the first instance of the annotation is stored in the WDB, the remaining
instances being discarded as redundant.

For further information on how to use WGL annotations, see “Annotations” later in this
document.

Scaling
You can scale constant values assigned to variables by specifying a value for Scale.

Scale works in concert with EqUnit (see “Units of Measurement™) to permit you to adjust
the unit of measurement to suit your needs. The scale prefix must follow the constant to
which it applies with no intervening white space and must precede the EqUnit value that it
modifies.

The following scale factors represent the available scaling multipliers for constants:

Table 5. Scaling prefixes

59

TSSI © 1979-2026

Waveform Generation Language

Suffix Multiplier
p (pico-) 10-12
n (nano-) 10-9
u (micro-) 10-6
m (milli-) 10-3

You can add the scaling prefix to modify the basic units of measurement, as described in
“Units of Measurement”.

An ExprSet sub-block using a scaled constant is shown in the following example. In the
example, the scaled constant is identified by a WGL annotation:

Start Example
exprset AC

Vol := 2mV; {THIS CONSTANT IS SCALED TO 1073}

end

End Example
Units of Measurement

Use EqUnit to specify a unit of measurement to be associated with a constant value. You
can specify the following units of measurement in the ExprSet sub-block:

Table 6. Units of Measurement

Notation | Uni
A ampere
H hertz
S Second
\Y, volt

You can add a scaling factor to modify the basic units of measurement, as described in
“Scaling”.

A WGL fragment showing a EqUnit setting affixed to a constant value assigned to a variable
follows:

60

TSSI © 1979-2026

Waveform Generation Language

Start Example

exprset timing
clock := 200nS; { Note the use of the “S” unit value.}
end

End Example

Minimum and Maximum Ranges

MinMax lets you specify minimum and maximum values when setting a valid minium value,
a valid maximum value, or a valid range (between minimum and maximum, including both).
This capability is supported through the use of square brackets ([]). If you want to specify
both minimum and maximum values you must list the minimum value first (2 . 2), followed
by a comma, followed by the maximum value (5. 7), for example, [2.2,5.7].

To specify only the maximum value, provide a comma as a place holder, followed by the
maximum value (7. 25), for example, [, 7.25].

Square brackets around an individual value, for example, [2 .51, is all that is required to
specify a minimum value (2 . 5) only. White space is optional in all cases. Minimum and
maximum values can be expressed only using constant values.

A WGL fragment showing a MinMax setting for a variable follows. The variables with
MinMax settings are identified by annotations.

Start Example

exprset AC 20mhz
tclk := 20nS;

tempDegC := 70;

Vcec := 4.5V;

V1 := Vcc/2;

Vih := Vcc-1 [, 5.5V]; {maximum value specified here }

Vil := Vih-3 [0.25V]; {minimum value specified here} tl :=

tempDegC/20*1.1nS + tclk;

write cycle := tclk*6 [60nS, 600nS]; {min and max specified here}

cycle time := 100nS;

end
End Example

EquationDefaults

The EquationDefaults block establishes which ExprSet sub-blocks are to be used as defaults
for calculations. The syntax of the WGL EquationDefaults block is:

61

TSSI © 1979-2026

Waveform Generation Language

equationdefaults DefaultsDecl end
A complete BNF syntactical representation of the EquationDefaults block follows:
EquationDefaults ::= “equationdefaults” DefaultsDecl “end”

DefaultsDecl ::= <equationSheetName> ““:”” <exprSetName>

[T 2] [T L)

{ “,” <equationSheetName> ““:” <exprSetName> } *;

The EquationSheet blocks named by the <equationSheetName> and ExprSet sub-blocks
named by the <exprSetName> must be defined before they are referenced in an
EquationDefaults block.

All EquationSheet blocks are active in the database but only one ExprSet sub-block per
EquationSheet block is active for calculations. EquationSheet blocks and their active
ExprSet sub-blocks are explicitly identified through the use of the EquationDefaults block
and are specified using a comma-separated list of pairs ending with a semi-colon. These
“equation sheet/expression set pairs” are specified by listing the EquationSheet name first,
followed by a colon (:), followed by the ExprSet sub-block name. White space is optional.

An example of an EquationDefaults block is shown below with two equation
sheet/expression set pairs. In this example, the ExprSet sub-block SET1 is associated with
EquationSheet AC and the ExprSet sub-block Control 20mhz is associated with the
EquationSheet AC_control.

Start Example

EquationDefaults

AC:SET1;

AC control:Control 20mhz;
end

End Example

The EquationDefaults block is not required. If this block is not used, the last ExprSet sub-
block declared within each EquationSheet supplies the variable values used for calculations.

If the EquationDefaults block is used, but is not fully specified by explicitly defining an
expression set for each equation sheet in the WDB, the variable values assigned in the last
ExprSet sub-block declared in the EquationSheet block are used.

If you use more than one EquationDefaults block in your WGL file, the equation
sheet/expression set pairs defined in the last EquationDefaults block in the WGL file
override any other equations sheet/expression set pairs in that EquationSheet block.

62

TSSI © 1979-2026

Waveform Generation Language

If any EquationSheet block is not specified in the EquationDefaults block(s), the variables
in the EquationSheet block obtain their assigned values from the last ExprSet sub-block in
that EquationSheet block.

Using more than one EquationDefaults block in your WGL program is not necessary, and
sometimes leads to confusion. For example, the following WGL fragment shows what
happens when you use two EquationDefaults blocks:

Start Example

EquationDefaults
AC : Set2;
end
EquationDefaults
timing : eql;
end

End Example

Assume that the only EquationSheet blocks in this WGL file areAC and t iming. The first
EquationDefaults block sets the default ExprSet sub-block for the EquationSheet block AC
to Set2, and the second EquationDefaults block sets the default ExprSet sub-block for the
EquationSheet block timing to egl. However, since every EquationSheet block in a
WGL file is active, there is an implicit equation sheet/expression set pair for t iming in the
first EquationDefaults block, and a similar implicit equation sheet/expression set pair for AC
in the second Equationdefaults block. It would be much clearer in this case to define both
defaults in a single EquationDefaults block, as shown below:

Start Example

EquationDefaults
AC : Set2;
timing : eql;

end

End Example

A valid reason for using more than one EquationDefaults block in your WGL program is
in the case of incremental test program development. For example, you might want to
generate a test program using one set of defaults, then, after evaluating your output, you
might add another EquationDefaults block containing different values. You would
comment out the previous EquationDefaults block, so that you could keep a record of which
defaults you had used during test development. The following example uses such a
technique:

Start Example

63

TSSI © 1979-2026

Waveform Generation Language

THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_g
#EquationDefaults
AC : Setl;
timing : eql;
#end
#
THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170 _h
#EquationDefaults
AC : Set2;
timing : eql;
#end
#
#THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170 1
#EquationDefaults
AC : Set2;
timing : eqg2;
#end
#
THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170 k
EquationDefaults

AC : Setl;

timing : eg2;
end

End Example

The above example records the defaults that were used for test 6170 g, 6170 h, and 6170 i.
The last EquationDefaults block will specify the defaults for test 6170 k when it is run.
Note that the pound signs denoting comment lines do not include the last EquationDefaults
block, therefore leaving the last block uncommented and active.

An example of a typical WGL program, using many of the equation support constructs
discussed in the previous sections of this chapter, is shown below:

Start Example

waveform equation_test case

signal
clk :input;
ale :input;
RE :input;
OE input;
dbus[0..3] :output;
end

TSSI © 1979-2026

Waveform Generation Language

equationsheet AC control

exprset worst

Vece := 4.

TempDegC
Textern
end

exprset best
Vcec := 5
TempDegC
Textern
end

75V;
= 70;

:= 10nS;

.5V;

:= 0nS;

exprset typical
Vecec := 5V;

TempDegC
Textern
end

end

= 20;

:= 5nS;

equationsheet AC timing

exprset eql

Vil := Vcc - 3.0;
Vih := Vcc - 1.0;
cycle time := TempDegC/100*1nS + 5V/Vcc*1nS + 100nS;
tclkl := 20nS;
tclk2 := tclkl + 20nS;
tl := TempDegC/100*1nS + 5V/Vcc*1nS + Textern + 10nS;
t2 := 20nS + tl;
t3 = t2 + tclkl;
t4 := cycle time - 30nS;
t5 := cycle time - 10nS;
end end
equationdefaults

AC timing:eql;

AC control:typical;

end

timeplate tsl period cycle time clk :=
tclkl:U, tclk2:D, 90nS:U];

input [0pS:D,

ale := input[0OpS:D, tl:S,
input[0pS:D, t2:S,
input [0pS:P, 10nS:S];
:= output[0pS:X,

RE
OE
dbus[0..3]
end

80nS:D];
t3:D];

td4:Q, t5:X];

65

TSSI © 1979-2026

Waveform Generation Language

pattern group ALL (clk, ale, RE, OE, dbus)

vector (0, tsl) := [- 1 1 1 10117];
vector (0, tsl) := [- 0 0 0 XXXX];
vector (0, tsl) := [- 0 0 0 XXXX];
vector (0, tsl) := [- 1 1 1 11117;
end
end

End Example

Tester-Specific Program Blocks

This section discusses the specific syntax for each of the tester-specific program blocks that
have not been discussed previously. Use the following tester-specific program blocks to
define tester friendly objects specific to your tester:

Formats

Registers

Pin Groups TimeGens
TimingSets

The tester-specific program blocks are presented in the likely order of use.

Formats

The Formats block is used to define tester-specific waveform shapes. A waveform shape
describes the general outline of a portion of a waveform. No timing information regarding
placement of waveform edges is conveyed in this program block.

The syntax of the WGL Formats block is:

format
FormatDecl
end

A complete BNF syntactical representation of the Formats block follows:
Formats ::= “format” { FormatDecl } “end”
FormatDecl ::= <formatName> “:” “[” <TDSstate> { “,” <TDSstate> } “]” «;”

FormatDecl is composed of a <formatName>, such as non return to zero,
followed by a colon (:), followed by one or more of the TDS state characters enclosed in

66

TSSI © 1979-2026

Waveform Generation Language

brackets ([]). The <formatName> must generally conform to the naming conventions of
your tester.

Table 7 below lists TDS state characters. State characters must be expressed using the proper
case, as shown.

Table 7. TDS logic states

TDS Logic State Characters Meaning

D Force logic low

U Force logic high

N Force logic unknown

Z Force logic high impedance

S Force logic substituted from pattern

C Force complement of substituted shape
P Force logic using previous format shape
L Compare logic low

H Compare logic high

X Compare logic unknown (don’t care)

T Compare logic high impedance

Q Compare logic substituted from pattern
R Compare complement of substituted format shape
0 Unknown direction, logic low

1 Unknown direction, logic high

F Unknown direction, logic high impedance
? Unknown direction, logic unknown

NOTE
The placeholder character (-) is used when no Q, R, S, or C appears in the
TimePlate and timing track used for that cycle.

TSSI © 1979-2026

Waveform Generation Language

Table 8. WGL-pattern-state to TDS-logic-state mapping

WGL Pattern State Characters TDS Logic State Characters Meaning

0 D Force logic low

1 U Force logic high

X N Force logic unknown

Z VA Force logic high impedance

- not applicable Placeholder

0 L Compare logic low

1 H Compare logic high

X X Compare logic unknown (don’t
care)

Z T Compare logic high impedance

There can be multiple instances of FormatDecl. Each instance is separated by a semicolon
;).
An example of a WGL Formats block is:

Start Example

format non return to zero [S];
delayed non return to zero [P,S];
return to zero [D,S,D];
return to one :[U,S,U];
return to inhibit [Z,S,7Z];
surround by complement [C,S,C];
force then compare [D,S,D,X,Q,X];

end

End Example

Registers

The Registers block is used for testers that use registers to control the formats applied to
particular tester pins.

68 TSSI © 1979-2026

Waveform Generation Language

Format registers are potentially as wide as the number of ATE pins declared in the preceding
Signals block. On input, the Registers block pin list may specify any subset of the ATE pins.
On output, the WGL Out Converter adds every declared ATE pin to the pin list. Each column
of each register may contain a format name declared in a preceding Formats block or a
hyphen character indicating unspecified contents. The binding of formats to pins is
determined by the correspondence of the position in the register declaration to the position
in the pin list. Each register has a name that must be unique among all the registers. Specific
register names, as well as format names, and ATE pin names, are tester specific.

The syntax of the Registers block is:
register (PinList)
RegisterDecl

end

A complete BNF syntactical representation of the Registers block follows:
Registers ::= “register” “(” PinList ©)” { RegisterDecl } “end”
PinList ::= <atepinName> { “,” <atepinName> }

RegisterDecl ::= <registerName> “:” “[” { FormatSpec } “]” *;”

FormatSpec ::= (<formatName> | “-”)

Where <atepinName> is an identifier or string previously declared in the atepin clause of a
Signals block, <registerName> is an identifier or string unique among the register

declarations, and <formatName> is an identifier or string previously declared in a Formats
block.

An example of a WGL Registers block is:

Start Example

register (atepinl, atepin2, atepin3, atepind)

ForceRegl : [- non return to zero return to zero -];
ForceReg2 : [return to one - - -];
CompareRegl : [- - - return to inhibit];

end

End Example

Pin Groups

The Pin Groups block is used to associate ATE pins named in the Signals block with entities
called pin groups.

69 TSSI © 1979-2026

Waveform Generation Language

A pin group is a collection of tester pins that share a common format and set of timing
generators (or strobes). Pin group assignments are normally made during the resource
allocation phase of a tool that writes out the ATE pin files such as the TDS
WaveBridge/TesterBridge tool. Pin group names and attributes, however, are defined in the
pingroup sub-block of the ATE Constraint block of the Test Control Language (TCL) file.
Some testers may have different formatting and timing capabilities associated with pins on
pin cards. Those testers organize their pin groups along the lines suggested by the pin cards.
See the “Test Control Language™ section for more information on how to name pin groups
and assign attributes.

A complete BNF syntactical representation of the Pin Groups block follows:
PinGroups := “pingroup” { PinGroupDecl } “end”
PinGroupDecl := <pinGrpName> “:” “[” [PinGroupList] “]” *“;”

PinGroupList := <pinElemName> { “,” < pinElemName > }

Any pin that is not explicitly assigned to a named pin group defined in the TCL file is
assigned automatically to the appropriate default pin group, listed in Table 9.

Table 9. Default pin groups

Pin Group Function

IPIN Used as a synonym for all ATE pins that have the direction
input and that are not explicitly assigned to another pin

group.

OPIN Used as a synonym for all ATE pins that have the direction
output and that are not explicitly assigned to another pin

group.

IOPIN Used as a synonym for all ATE pins that have the direction
bidir and that are not explicitly assigned to another pin

group.

NOTE

The functions listed in Table 9 apply only to automatically defined pin groups,
by definition the pins in these groups are not specifically assigned to another

group.

TSSI © 1979-2026

Waveform Generation Language

Below is an example of a Signals block mapping signals to ATE pins, with a Pin Groups
block associating the ATE pins named in the Signals block with pin groups defined in the
Pin Groups block.

An example Signals block mapping signals to ATE pins follows:

Start Example

signal
clk : input atepin[P1l:1 tg[BCLK1l, CCLK1l]];
sigl : input atepin[P2:2 tg[ACLK1l]];
sig2 : input atepin[P3:3 tg[ACLK1l]];
sig3 : output atepin[P4:4 tg[WSTRB1]];
sigd : output atepin[P5:5 tg[WSTRB1]];
sig5 : bidir atepin[P6:6 tg[BCLK2, CCLK2, WSTRBZ,

DREL1, DRET1]];

end

pingroup
IPIN [P1, P2, P3];
OPIN [P4, P5];
IOPIN : [P6];
GRPO : [P1];
GRP1 [P2, P3];
GRP2 [P4, P5];
GRP3 [P6];

end

End Example

It is an error if a pin group element name has not been previously defined as an ATE pin of
a signal in the Signals block.

TimeGens

The TimeGens block is used to define the tester-specific timing generators for a tester. A
timing generator is used to specify the time values for edge placement in waveform formats.

The syntax of the WGL TimeGens block is:
timegen

TgDecl

end

A complete BNF syntactical representation of the TimeGens block follows:

TimeGens ::= “timegen” { TgDecl } “end”

71

TSSI © 1979-2026

Waveform Generation Language

TgDecl ::= <timeGenName> [“[” <edgeCount> “]”] “:” TgTyge *“;”
TgType ::= (“force” | “compare” | “direction”)

TimeGenDecl is composed of a <timeGenName>, such as WSTRB1 [2], followed by an
optional edge count specifier, followed by a colon (:), followed by one of the following
reserved words: force, compare, or direction.

An example of a WGL TimeGens block is:

Start Example

timegen
ACLK1l : force;
BCLK1 : force;
CCLK1l : force;
WSTRB1[2]: compare;
DRE1[2]: direction;
end

End Example

TimingSets

The TimingSets block is used to define the tester-specific timing edges required to represent
the timing waveforms of the hardware design on a tester. Each timing set has a number and
a set of values for the timing generators.

The syntax of the WGL TimingSets block is:

timeset <tsNumber>
TgAssign end

A complete BNF syntactical representation of the TimingSets block follows:
TimingSets ::= “timeset” <tsNumber> { TgAssign } end”

TgAssign ::= <timeGenName> [“[” <edgeNumber> “]”] “:=” TimeReference

€.

[“repeat” <repeatCount> } “;
TimeReference ::= (Time | <variableName>)
Time ::= <timeValue> Unit

Unit ::= (CépS” “nS” CCus’7 GCmS” | “SGC”

72 TSSI © 1979-2026

Waveform Generation Language

TgAssign is composed of an existing timing generator name (having been defined in the
TimeGens block), followed by an optional numeric value for edge number enclosed in
brackets ([]), followed by an assignment operator (:=), followed by a numeric value for
time expressed in a supported unit of measurement or a variable having been previously
defined in the ExprSet sub-block of an EquationSheet block. (See “ExprSet”.)

NOTE

A variable used in the TimingSets block must have a value that is meaningful
when expressed in units of time.

An example of a WGL TimingSets block is:

Start Example

timeset 1

ACLK1l := 10ns;
BCLK1 := 20ns;
CCLK1l := 80ns;
WSTRB1[1]:= 30ns;
WSTRB1[2] := 80ns;
end
timeset 2
ACLK1l := 10ns;
BCLK1l := 50ns;
CCLK1 := 20ns;
WSTRB1[1]:= 40ns;
WSTRB1[2]:= 60ns;
end

End Example

You can use variables in the place of literal time values in the TimingSets block. The
variables must have been previously defined in an ExprSet sub-block of an EquationSheet
block. (See “ExprSet”)

You can also substitute variables for the literal time value associated with a previously
defined timing generator (See “TimeGens”) You can intermix literal time values and
variables in the TimeSets block.

The following example shows how variables that were defined in an EquationSheet block
can be used in a TimeSets block. The use of variables is highlighted by bold typeface.

Start Example

73

TSSI © 1979-2026

Waveform Generation Language

timeset 0 {tsl}
tgfl [1] := 0pS;
tgfl [2] := 20nS;
tgcl [1] := tclk;
tgcl [2] := 90nS;
tgdl [1] := 0pS;
tgdl [2] := 100nS;
tgf2 [1] := t1;
tgf2 [2] := t2;
tgd2 [1] := 0pS;
tgf3 [1] := 25nS;
tgf3 [2] := 45nS;
tgd3 [1] := OpS;
tgfd [1] := 30nS;
tgd4d [1] := 0pS;
tgce5 [1] := t3;
tge5 [2] := 52nS;
tgd5 [2] := 0pS;

end

End Example

Additional Features

WGL supports additional features that can provide further control over the data when
dealing with WGL from other cores. These features let you use predefined WGL statements
in various places throughout the WGL program, bring data into the current WGL file from
other WGL files, and insert comments into the WGL file.

Macros

A WGL macro is a body of valid WGL statements that you can save for later use by giving
the body of statements a macro name (<macroName>). The WGL statements become the
body of the macro, (<macroBody>). This process defines the contents of the macro. You can
recall the contents of the macro that you defined by using a macro invocation. Invoking a
macro is essentially calling on your defined macro by name.

Using a macro is a two-step process. Y ou must first define the macro with a macro definition.
After you have defined the macro, you can invoke it as many times as you want, in any
syntactically correct place in the WGL program, with the macro invocation.

74 TSSI © 1979-2026

Waveform Generation Language

Macro Definition

The Macro Definition feature follows the same block structure format used by the WGL

program blocks. The following rules apply to the macro definition:

You cannot define other macros within a <macroBody>.

You cannot invoke a macro recursively; you must not define a macro that invokes itself.
You can use a parameter in the macro to indicate places in the macro definition where
values are to be substituted when the macro is invoked and expanded.

You can define macros anywhere in the WGL program, but for ease of WGL program

maintenance, it is a good idea to define macros at the beginning of the WGL file, right after
the beginning program delimiter waveform.

You can define a macro that invokes another previously defined macro.

The syntax of the WGL Macro Definition feature is:

macro <macroName> (MacroParameterList)
<macroBody>
endmacro

A complete BNF syntactical representation of the Macro Definition feature follows:

MacroDefinition ::= “macro” <macroName> [“(”” MacroParameterList ©)”]
<macroBody> “endmacro”

(132

MacroParameterList ::= <macroParameter> { “,” <macroParameter> }

In its simplest form, the Macro Definition feature allows you to store a text string under a
reference name. The text string may be quite lengthy, cumbersome, and difficult to
remember. You can retrieve the text string by calling upon the reference name. This is what
happens when you create a macro definition and call up the contents of the <macroBody>
using the Macro Invocation feature. Calling up the contents of the macro is often referred
to as “expanding” the macro because the contents of the macro are inserted in-line into the
code at the place they are called.

A parameter substitution is specified by the ampersand character (@), followed by the
<macroParameter> from the MacroParameterList. The value to be substituted into the
(@<macroParameter> is taken from the MacroParameterList, on the first line of the macro
definition. The values for the MacroParameterList are supplied from a list of arguments in
the macro invocation. Each Macro Definition can have a maximum of 128
<macroParameter>s.

75

TSSI © 1979-2026

Waveform Generation Language

Macro Invocation

The Macro Invocation feature is the counterpart to the Macro Definition feature. To invoke
a defined macro, use the name of the defined macro (<macroName>) followed by an
optional list of arguments, the contents of which can be substituted into the optional macro
parameter list of the Macro Definition feature. If you use the argument list, the macro
parameter list must be correspondingly defined in the macro definition.

The syntax of the WGL Macro Invocation feature is:

<macroName> [(ArgumentList)]
A complete BNF syntactical representation of the Macro Invocation feature follows:
Macrolnvocation ::= <macroName> [“(”” ArgumentList)]

ArgumentList ::= <identifier> { “,” <identifier> }

Definition and Invocation without Parameters

Displayed below is an example of a simple macro definition without parameter substitution
from a macro parameter list. This example shows four separate macros: add, sub, mul,
and div.

Start Example

macro add
00011111
endmacro

macro sub
10101101
endmacro

macro mul
11100001
endmacro

macro diwv
10111000
endmacro

End Example

An example of the macro invocation without parameter substitution is:

76

TSSI © 1979-2026

Waveform Generation Language

pattern loadl

vector (1)
vector
vector
vector

(
(
(
vector (
vector (
vector (
vector (
end

Start Example

(instBus)

[add];

sub];
l .

’

mu

’

’

[]
[]
[]
[]
[add];
[]
b

3
c
—

1;

End Example

An example of the values that exist after macro expansion is:

pattern loadl

vector
vector
vector
vector
vector
vector
vector
vector
end

Start Example

(instBus)
[00011111]
[10101101]
[11100001]
[101110007;
[]
[]
[]

’
’
’

’

00011111

00011111

11100001
(101011017,

’

’

End Example

Definition and Invocation with Parameters

You can invoke a macro and substitute values into the macro parameter list by using the
optional argument list with the macro invocation. This gives you added flexibility when
using the macro to perform a repetitive task, such as filling vectors with pattern data.

The following is a macro definition with parameter substitution from a macro parameter list.
This example uses a macro to fill vectors with pattern data. The <macroParameter> s
receives a value from a list of arguments in the macro invocation diagonal fill

displayed in the subsequent example.

An example of a macro definition with parameter substitution from the MacroParameterList

follows:

Start Example

77

TSSI © 1979-2026

Waveform Generation Language

macro diagonal fill (s)
vector (+) : [0000000@s];
vector (+) [000000@s01];
vector (+) [00000@s007];
vector (+) [0000@s000];
vector (+) [000@s0000];
vector (+) [00@s00000] ;
vector (+) : [0@s000000];
vector (+) [@s00000007;

endmacro

End Example

An example of a macro invocation with the argument list for substitution into the macro
parameter list of the macro definition follows:

Start Example

signal
datal[7..0]
end

input radix binary;

pattern memCheck (data)
diagonal £fill(O0);
diagonal fill(1);
diagonal fill(Z);
diagonal fill (X);

end

’

’

(
(0
(1
(2
(X

’

End Example
An example of the values that exist for the first three macro invocations after expansion of
the macro in the previous example is:

Start Example

vector (+)
vector (+)
vector (+)

[000000017];

(000000107
(000001007

pattern memCheck (data)
vector (+) [00000000]
vector (+) [000000007
vector (+) [000000007]
vector (+) [000000007];
vector (+) [000000007;
vector (+) [00000000];
vector (+) : [000000007;
vector (+) [00000000];

78

TSSI © 1979-2026

Waveform Generation Language

vector (+) [000010007;
vector (+) [00010000];
vector (+) [00100000];
vector (+) [01000000];
vector (+) [100000007;
vector (+) [00000002Z];
vector (+) [000000Z07;
vector (+) [00000Z00];
vector (+) [0000Z000];
vector (+) [000z00007];
vector (+) [00z00000];
vector (+) [0Z000000];
vector (+) :

[Z00000007 ;

end

End Example

Include Files

Data that you use repeatedly, for many different WGL programs, can be stored in separate
ASCII files and called upon by WGL programs. This lets you create a library of such data
files, with each file containing specific types of data in WGL syntax. Typically these are
patterns from cores. To include this data into a WGL program, you use the Include file

feature of WGL.!

Like a WGL macro, Include files are called by an invocation statement, in this case an
“include” invocation.

You can only invoke a currently existing WGL file that contains syntactically correct WGL
statements. The Include file can contain any valid WGL statements.

The syntax of the Include Invocation feature is:

include <file name>;
A complete BNF syntactical representation of the Include file feature follows:

Includelnvocation ::= “include” <fileName> *;”
b

!'. Binary pattern files cannot be included in the WGL program via an Include file statement . See “Binary WGL”
for information on how to include binary formatted files in a WGL file.

79 TSSI © 1979-2026

Waveform Generation Language

An example file named buses, that can be invoked in a WGL program to be used as an

Include file:

Start Example
data [31..0] : birdir;
addr [31..0] : bidir;

End Example

Use the WGL reserved word include to invoke an Include file. When you invoke the
Include file, you must specify the file name. You can also use an absolute or relative path
when naming the file to be included. The entire invocation is called an include invocation.
There cannot be any other WGL syntax, including comments or annotations, on the same
line as an include invocation.

The following is an example WGL program with an Include file invocation for a file named
buses.dat:

Start Example

waveform busArbitration

signal
include “busses.dat”;
end
End Example
Annotations

The Annotations feature allows you to insert comments that are translated for inclusion or
processed by downstream 3™ party tools.

The annotations are enclosed within braces ({ }). Generally speaking, if the annotation
occupies the same line as another WGL statement, the annotation is associated with the
characteristic described by the WGL statement. If the annotation occupies a line
exclusively, with no other WGL statement on the same line, the annotation is associated
with the WGL statement immediately following.

The syntax of the Annotations feature is:

{ . . .1}
A complete BNF syntactical representation of the Annotations feature follows:

Annotation ::= “{” <any explanatory text> “}”

80 TSSI © 1979-2026

Waveform Generation Language

An example of annotations in a WGL program is:

Start Example

timeplate read period 300ns
clock := input [Ops:D, 50ns:U, 100ns:D, 150ns:U, 200ns:D,250ns:U];
in := input [Ops:D, 30ns:U]; {Annotation for the signal ‘in’}
{Annotation associated with the signal ‘out’ below. So
conversion tools must follow precisely or the
purpose of annotation will be for the signal will
be off}
out := output [0Ops:X, 70ns:H];
end

End Example

Global Mode

The Global Mode feature is used to control attributes of an object in every occurrence of
the object with which the attribute is associated.

pmode Attribute

The pmode attribute defines the state value of the first cycle for those cycles that adopt their
state value from the previous cycle (the P Mode). This feature permits you to tailor the initial
state value of waveforms that, by default, derive their initial state value from the previous
cycle.

Table 10 defines the supported pmode attribute options. Refer to Table 7 for a complete list
of TDS state characters.

Table 10. P Mode definitions

P Mode Setting P is Replaced by Definition
Previous Force a force state If force pattern data for the cycle (associated with the same
(P_LAST FORCE) | (D, U, N, or2) signal) is Z:

P is replaced by Z.

If force pattern data for the cycle (same signal) is not Z:
P is replaced by the last force state value on the same
signal (D, U, N, or Z), whether the previous force state is
itself a result of substitution, or is a fixed value.

81 TSSI © 1979-2026

Waveform Generation Language

Previous Driving
(P_LAST DRIVE)

D,U,orZ

If force pattern data for the cycle (associated with the same
signal) is Z:
P is replaced by Z.

If force pattern data for the cycle (same signal) is not Z:
P is replaced by the last D or U state on the same signal,
whether the previous force state is itself a result of
substitution, or is a fixed value.

Previous, if Force,
else Z
(P_FORCE OR 7)

last force state
value, else Z

P is replaced by the last state value on the same signal, if
the last state value is force (D, U, or N) or monitor (d, u, or
n). If the previous state value is other than the above, P is
replaced by Z.

Advantest
(P_ADVANTEST)

a force state

If force pattern data for the cycle (associated with the same
signal) is Z:
P is replaced by Z.

If force pattern data for the cycle (same signal) is not Z: P is
replaced by the previous force state if that state is D, U, N,
orZ.

P is replaced by D if the previous state is L or T.
P is replaced by U if the previous state is H or X, but ignores

previous X states that follow force states and are not at the
start of the cycle.

IMS
(P_IMS)

last force state
value, else Z

For scalar (non-multiplexed) signals, P is replaced by the
last state value on the same signal, if the last state value is
force (D, U, or N) or monitor (d, u, or n). If the previous state
value is other than the above, P is replaced by Z.

For multiplexed signals, P substitution is done after
multiplexing. Thus, P substitution for a P state on a
multiplex member depends on states of other mux
members.

Don’t care
(P_DONT_CARE)

P is replaced by N state.

The syntax of the WGL P Mode attribute is:

pmode [PModeOption];

A complete BNF syntactical representation of the P Mode Attribute feature follows:

82

TSSI © 1979-2026

Waveform Generation Language

GlobalMode ::= “pmode” “[” PmodeOption “]” «;”
PmodeOption ::=(“dont_care” | “last_force” | “last drive” | “force or z”|“advantest” | “ims”

An example of a pmode attribute definition is:

Start Example

waveform test.wdb
pmode [dont care];
signal a : bidir;
end
timeplate io period 500ns
a := input [Ops:D, 200ns:S, 300ns:D]; a :=
output [Ops:P, 250ns:Q, 400ns:T];
end
end

End Example

Examples

Using WGL Macros and Include Files to Simplify
Testing

The following examples illustrate the use of include files and macros in a WGL program
used to generate a test for a microprocessor. The WGL program in
example Test Chip.wgl contains only the beginning and ending statements and four
include invocations. An example WGL program using Include files is:

Start Example

An example showing the use of macros and include files, used to generate
a test for a Test Chip microprocessor
#
waveform Test Chip testl
include “signals Test Chip.wgl”
include “timing Test Chip.wgl”

83 TSSI © 1979-2026

Waveform Generation Language

include “macros_Test Chip.wgl”
include “patterns 1 Test Chip.wgl”

end
End Example
An example WGL Include file containing signal data is:
Start Example

__
file: signals Test Chip.wgl

signal

AS : output;

AVEC : input;

A[0..31] : output radix hexadecimal;

BERR : input;

BG : output;

BGACK : input;

BR : input;

CDIS : input;

CLK : input;

DBEN : output;

DS : output;

DSACKO : input;

DSACK1 : input;

D[0..31] : bidir radix hexadecimal;

ECS : output;

FC[0..2] : input;

HALT : bidir;

IPEND : output;

IPL[O0..2] : input;

OCS : output;

RESET : bidir;

RMC : output;

"R/W” : output;

SIZ[0..1] : output;
#

We divide the data bus up into the instruction and data groups
#

Inst [D[0..15]] : radix hexadecimal;

Data [D[16..31]] : radix hexadecimal;
end

End Example

84 TSSI © 1979-2026

Waveform Generation Language

An example WGL Include file containing timing data is:

timeplate read period 120nS

Start Example

6

]
]
]
1

OnS:D, 80nS:U,

’

’

10nS:U];

CLK := input[0pS:U, 20nS:D, 40nS:U,
A[0..31] := output[0pS:X, 20nS:Q, 115nS:X];
FC[0..2] := input[0pS:P, 20nS:S];

SIZ[0..1] := output[0pS:X, 20nS:Q, 115nS:X];
ECS, OCS := output[0pS:X, 8nS:L, 25nS:X];
AS := output[0pS:X, 40nS:L, 100nS:X
DS := output[0pS:X, 40nS:L, 100nS:X
"R/W” := output[0pS:X, 10nS:H, 115ns:X
DSACKO, DSACK1 = input[0pS:U, 70nS:D,

Inst,Data := bidir|[
DBEN output
BERR, HALT, RESET

asynch inputs

pS:

0pS:X,
[0

X,

80nS:S, 130nS:X]

’

50nS:L, 115nS:X];

input [0pS:U, 80nS:D];

AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N, 45nS:D,

asynch outputs

BG, IPEND, RMC := output [0pS:X];

end

timeplate write period 120nS

CLK := input[0pS:U, 20nS:D, 40nS:U, 60nS:D, 80nS:U,
A[0..31] := output[0pS:X, 20nS:Q, 115nS:X];
FC[0..2] := input[0pS:P, 20nS:S];

SIZ[0..1] := output[0pS:X, 20nS:Q, 115nS:X];

ECS, OCS := output[0pS:X, 8nS:L, 25nS:X];

AS := output[0pS:X, 40nS:L, 100nS:X];

DS := output[0pS:X, 60nS:L, 100nS:X];

"R/W := output[0pS:X, 10nS:L, 115ns:X];
DSACKO, DSACK1 = input[0pS:U, 65nS:D, 110nS:U];
Inst,Data := output[0pS:X, 40nS:Q, 130nS:X];

DBEN := output[0pS:X, 25nS:L, 115nS:X];

BERR, HALT, RESET
asynch inputs

input [0pS:U, 80nS:D];

AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0OpS:N, 45nS:D,

asynch outputs

BG, IPEND, RMC := output[0pS:X];

end

timeplate idle period 40nS

100nS:D];

75nS:N];

100nS:D];

75nS:N];

85

TSSI © 1979-2026

Waveform Generation Language

CLK := input[0pS:U, 20nS:D];

A[0..31] = output[0pS:X];

FC[0..2] := input[0pS:P];

SIZ[0..1], ECS, OCS, AS, DS, “R/W” := output[0pS:X];
DSACKO, DSACKl := input[0pS:U];

Inst, Data := output [0pS:X];

DBEN := output [0pS:X];

BERR, HALT, RESET := input[0pS:U];

asynch inputs

AVEC, BGACK, BR, CDIS, IPL[O0..2] := input[OpS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];
end

timeplate reset period 40nS
CLK := input[0pS:U, 20nS:D];

A[0..31] = output[0pS:X];

FC[0..2] = input[0pS:N];

SIZ[0..1], ECS, OCS, AS, DS, “R/W” := output[0pS:X];

DSACKO, DSACKl := input[0pS:N];

Inst, Data := output[0pS:X];

DBEN := output [0pS:X];

BERR, HALT := input[0pS:N];

RESET := input[0pS:D];
asynch inputs

AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:NJ;
asynch outputs

BG, IPEND, RMC := output[0pS:X];
end

End Example
An example WGL Include file containing macros is:
Start Example

__
file: macros Test Chip.wgl
__
#

Here are macros defining read and write cycles in terms of only the data
that changes, in the order that you might want to fill them out.

macro readcycle(instr, addr, datal6 32, fcO 2, size)
read) :=
[- - @ddr - - - - - - - - - -
@instr ----
@datalée 32 ---- -

vector (+,

86

TSSI © 1979-2026

Waveform Generation Language

endmacro
macro writecycle(instr, addr, datalé6 32, fc0 2, size)
vector (+, write) :=
[- - @addr - - - - - - - - - -
--—-—- @instr
---- @datalé6_32 -
@Qfc0 2 - - = ——— = - - - -
@size 1;
endmacro macro
idlecycle
vector (+, idle) = [- = ———————— = - - - - - - - - - e ————

endmacro macro
resetcycle
vector (+, reset) (= [- = ——====—= - - - - - — — - — — ———— ————

e eI I b

endmacro

End Example

NOTE
The hyphens (-) in the previous example are placeholders for pattern data
supplied for the macros readcycle, writecycle, idelcycle, and resetcycle by the
WGL Include file shown in the example below.

An example WGL Include file containing pattern data is:

Start Example

here are the patterns for testl

pattern group ALL (AS, AVEC, A, BERR, BG, BGACK, BR,CDIS, CLK, DBEN, DS, DSACKO, DSACK1,
Inst:I,Inst:0,Data:I,Data:0,ECS,FC,HALT:I,HALT:0, IPEND, IPL,OCS

,RESET:I,RESET:0,RMC,R/W, SIZ)
repeat 512 resetcycle

readcycle (B61B, B6EE13D6, FCA3, 100, 00)

87 TSSI © 1979-2026

Waveform Generation Language

writecycle (9691, F0201827, A308, 111, 10) idlecycle

readcycle (4281,F0201827,4314,111,10)

writecycle (30C2,E4394013,4460,011,11)
readcycle (EB3C, 86F78F4C,F616,100,11)

writecycle (EE53, 9C32C7BA,E9EC,101,00)
readcycle (BFl6,D44C5EB1,DF57,000,11)

writecycle (8D54,E7AB41EC,2927,100,00)
readcycle (7ABC, 8316DF68,0744,001,10)

writecycle (69D0,AE31A3A2,0DF0,001,01)
idlecycle

readcycle (7A64,D3B28D8E,A4D6,011,11)

writecycle (4F7E,CFFE12F7,4850,011,11)
readcycle (9A5F, 225D2C89,F66B,010,11)

writecycle (619D, 7721483A,4862,000,10)
end

End Example

Using WGL to Support Scan Test Hardware

This example WGL file illustrates a simple scan test using the scan hardware associated with
the device shown in Figure 3.

FF1 B2
N= o] b0}
1 D[1]
B[]]
c |: LTCHI[] :l D[2]
sc_1IN [] 1 2 3 4 g Eii
CLK [|
sc ouT [}] DI5]
MODE [| % D[6]
D[7]

Figure 3. Example device with scan hardware

The device in Figure 3 has a number of input, output, and bidirectional signals, including
CLK, MODE, SC 1IN, and SC_OUT. Internal cells on the scan chain are declared in the
scanCell block of the following example WGL files.

A partial example WGL file supporting scan test is:

Start Example

88 TSSI © 1979-2026

Waveform Generation Language

waveform scan_example

SC_ouT];

signal
A : input;
B : input;
cC : output;
SC_IN : input;
SC_OUT : output;
CLK : input;
MODE : input;
D[O0..7] : bidir;
end
scanCell
FF1 ;
B2 ;
LTCH[1..4] : radix hexadecimal;
end
scanchain
chainl [SC IN, LTCH[1], FF1, !, B2, LTCH[4], LTCH[3], LTCH[2],
end
scanState
stateX := ;
statel := FF1 (1) B2(0) LTCH(A);
state2 := FF1(1l) B2(1l) LTCH(X);
state3 := ALLSCAN(010101);
end

The scan chain shift order is described in the scanchain block above. Note the
inverter placed in the chain between cells FF1 and B2. The states that are set
in these cells by scan-in operations or tested during scan-out operations are
declared in the scanState block.

End Example

The test waveform consists of two parallel vectors, followed by a six-cycle scan sequence
that shifts a new state into the internal cells while simultaneously sampling the scan chain
output and comparing it with another expected state. At the end of the scan operation, two

more parallel vectors are applied and the scan is repeated with different input and output
states.

A partial example of WGL file with scan entities is:

Start Example

timeplate tpl period 500nS
A, B, SC _IN, MODE, D := input[OpS:P, 100nS:S];

89

TSSI © 1979-2026

Waveform Generation Language

C, SC_OUT, D := output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];

end

timeplate scanPlate period 500nS

A, B, SC IN := input[OpS:P, 100nS:S];
SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];
D := input[0pS:P];

MODE := input[0pS:P, 100nS:U];

C, D := output[0pS:X];

CLK := input[0OpS:D, 250nS:U];

end

pattern group ALL (A, B, C, sSC _IN, SC OUT, MODE, D:I, D:0)

vector (tpl) :=[1 0 X X X 0 11010000 —-—-———---- 1;:
vector (tpl) :=[1 0 0 X X 0 —-———-——- 111111107 ;
scan (scanPlate) :=[0 1 - = = = ———————— ————————1,

input[chainl:statel],
output [chainl:stateX];

vector (tpl) :=[1 1 X X X 0 00011101 ----—-—-—- 1;
vector (tpl) :=[1 1 0 X X 0 —=-—————- 010101017,
scan (scanPlate) :=[0 0 - = = = mmmmmmee e 1,

input[chainl:state3],
output [chainl:state2];
vector (tpl) := [0 0 X X X 0 11010011 --————--- 1;
vector(tpl) := [1 1 0 X X 0 ——===——- 0101010171,
end

end

End Example

In the example above, two TimePlates are used: tpl and scanPlate. tpl is used on
parallel pattern rows. scanPlate is used during scan operations. Note that S and Q
shapes appear on those tracks associated with scan in and out signals. Signals A and B use
pattern data defined in the scan rows.

The WGL Patterns block illustrates parallel vectors interspersed with scan operations. The
scan vectors refer to the scan TimePlate and specify which states are scanned in and out
using the specified chain. For example, the first scan vector scans in statel and
simultaneously scans out stateX. Since the specified chain is six cells in length, the scan
vectors each have a duration of six cycles.

90

TSSI © 1979-2026

Waveform Generation Language

Using Annotations in WGL

In WGL syntax, annotations are “legal” anywhere, as long as they are enclosed in braces ({ }).
In this sense, annotations are treated exactly like WGL comments. However, there are
locations that are meant to be internally used only (or should be ignored).

The example below shows a WGL file with annotations added in various locations
throughout the file. The locations to be ignored will be indicated by “{ lost}.

Start Example

{ lost } waveform wdbl { lost }

{ lost }

signal { lost }
a { al } : input;

b : input; { bl }

c : {cl} input;
{c21}d : input;

e[l..10{el}] : input;
end { append to last sig }
scancell

celll; { scl }

cell2; { sc2 }

regl; { regl }

end { lost }

scanchain

chainl {cl} [a, celll {c2}]; { lost }
end { lost }
scanstate

statel {moved} := celll(l) {moved} cell2(1l); {s3}

end { lost }

timeplate tpl {lost} period {t2} 200ns {t3}

a{sl},b{lost} := input[Ops:D {lost}, 50ns:S, 100ns:D];
c{s5},d{lost} := input[Ops:D {lost}, 50ns:S, 100ns:D];
end

pattern loadl (a)
vector (+,tpl)

Il
—
il
i
~
—~
<
=
—

{s4}
{s6}

91

TSSI © 1979-2026

Waveform Generation Language

vector (+,tpl) := {v2} [1];

vector {v3} (+,tpl) 1= [1];

vector (+,tpl{vd}) := (11
end

end {lost }

End Example

Binary WGL

A binary format of the pattern vectors, to be used in place of ASCII pattern data, is
supported within WGL. This capability allows you to use WGL binary pattern data from a

CAE simulation' in a more compact way.

The binary pattern data in the Pattern section provides a compact data representation for
users who are not concerned about readability but who are concerned about file size and run
time. WGL binary pattern data has the following advantages over WGL ASCII data:

= A large number of vectors take up less disk space.

= The WGL In Converter reads binary data quicker than ASCII data.

= Scan state vector information is provided directly on a vector row. (In ASCII form,
scan state vector information cannot be provided directly on a vector row in the

pattern section but must be de-referenced through a scan state name. This results in

large amounts of scan data in the upper portion of the WGL file, making it less
readable.)

WGL Binary Interface

Binary pattern data may be specified in a separate file (preferred) or included in the WGL

file.? Binary pattern files are included in the WGL program via a BinaryPattern file
command, not via an Include file statement. (You cannot mix ASCII pattern vectors with
binary pattern data.)

' Various CAE simulators output the binary formatted pattern data as specified in this section.
2 Do not edit a WGL file that has binary pattern data; null pattern bits may be deleted by the editor.

92 TSSI © 1979-2026

Waveform Generation Language

Binary WGL is a subset of ASCII WGL and there is not an exact one-to-one
correspondence between ASCII and binary WGL. Some WGL structures are not supported
in binary, including symbolic assignments, macros, vector labels, and comments.

Including Binary Files

To signify that binary pattern data is supplied in place of the Patterns block within WGL,
use the BinaryPattern command, followed by the binary data.

BinaryPattern; <carriage return>

If the binary pattern data is supplied in a file separate from the WGL file, then the file
parameter must also be specified, followed by the file name where the binary pattern file
resides.

BinaryPattern file:=binary.data; <carriage return>

The following example WGL file shows theBinaryPattern command. WGL statements
(including the ScanState and Patterns block) that are not used with binary pattern data are
shown as comments. (That is, preceded with a #.)

Start Example

waveform scan example

signal
SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUTZ2 : output;
CLK : input;
end
scanCell
FF1 ;
B2 ;
cl ;
D1 ;
LTCH[1..4] : radix hexadecimal;
end
scanchain

chainl [SC_IN, LTCH[1], LTCH[4], LTCH[3], LTCHI[2], SC_OUT];
chain2 [SC IN2, FF1l, B2, Cl, D1, SC OUT2];
end

93

TSSI © 1979-2026

Waveform Generation Language

XXXX

’

’

)

1X10)

1XXX) ;
)
)

’

0000

’

#scanState

statel := chainl(1101) chain2(1001);

state?2 := chainl (1011) chain2 (0001
state3 := chainl (0X00) chain2

stated4 := chainl (0X00) chain2

state5 := chainl (0101) chain2

state6 := chainl (XXXX) chain?2

#end

timeplate tpl period 500nS

SC_IN, SC IN2 := input[OpS:P, 100nS:S];
SC_OUT, SC _OUTZ2 := output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];
end
timeplate scanPlate period 500nS
SC_IN2, SC _IN := input[0OpS:P, 100nS:S];
SC_0UT2, SC _OUT:= output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];
end
binarypattern file := testd.tmp;
#pattern group ALL (CLK, SC IN, SC OUT, SC IN2, SC OUT2)
vector (tpl) := [- X X X X 1;
vector (tpl) := [- X X X X 1;
scan (scanPlate) := [- - - - - 1,
input[chainl:statel], output[chainl:
input[chain2:statel], output[chain2:
vector (tpl) := [- X X X X];
vector (tpl) := [- X X X X];
scan (scanPlate) := [- - - - - 1,
input[chainl:state?2], output[chainl:
input[chain2:state2], output[chain2:
vector (tpl) := [- X X X X];
scan (scanPlate) := [- - - - - 1,
input[chainl:state5], output[chainl:
input[chain2:stateb5], output[chain2:
vector (tpl) := [- X X X X];
#end
end

End Example

state3],
state3];

stated],
stated];

stateo6],
state6];

94

TSSI © 1979-2026

Waveform Generation Language

Binary File Format

The following sections illustrate ASCII WGL formats and equivalent binary WGL formats.
If you are reading binary format files (including binary pattern data in a WGL file), you do
not need to know this information. However, if you will be writing binary files, you must
adhere to the following formats.

The following format conventions are used in this section:

For readability, characters are shown with the entire string in quotes. In the binary file, the
characters are in binary format.

Numbers are shown in hexadecimal, instead of binary; the Ox preceding a value indicates
hexadecimal notation.

Spaces are added for clarity.

Braces and brackets are used as described in “WGL Syntax Notation Conventions”.

The binary format is processed using standard I/O routines; the binary file is not parsed. In
addition, the binary file is not context sensitive.
Definitions

To ensure that the binary format is machine independent, data bits must be written out
consistently across machines. The following definitions are required to ensure machine

independence.
Table 11. Binary Definitions
Item Description
byte 8 bits (unsigned) MSB to LSB
short 16 bits (unsigned) MSB to LSB
long 32 bits (unsigned) MSB to LSB
char 8 bits (unsigned) MSB to LSB
chars Multiple characters

Line Format
All lines in the WGL binary section conform to the following format.
byte count line type {rest-of-line}

Table 12. Components of Line Format

95 TSSI © 1979-2026

Waveform Generation Language

Item Type Description
byte_count short The length of the line_type and rest-of-line in bytes
(excludes byte count)
line_type short Byte which describes the line type (See Table 13.)
rest-of-line Varies depending on the line type (See Table 14

through Table 32.)

The line length is specified by the byte count at the beginning of each line. (No specific line
termination is provided.)

Line Type

The line_type field is an unsigned short which specifies the intent of the line.
Table 13 shows the mapping.

Table 13. Hexadecimal Values for Each Line Type

Hexadecimal Line Type
0x0000 Vector Line
0x0001 Subroutine
0x0002 End Pattern
0x0003 Loop
0x0004 End Loop
0x0005 Subroutine Call
0x0006 Skip
0x0007 Scan Parallel
0x0008 Scan Chain
0x0009 Repeat
0x000a Pattern Header
0x000b Annotation
0x000d Map Key

96 TSSI © 1979-2026

Waveform Generation Language

0x000e

End Subroutine

0x000f

End Binary (ASCIl WGL
statements follow)

0x00ff

Version Control

Line Type Ordering

The binary pattern information must follow the same ordering restrictions required by
ASCII WGL. (See “Patterns”) That is, the pattern header is followed by the vectors, which
are followed by the subroutine definitions. In addition, the following restriction must be

followed:

= The version control line is required to be the first line in the file, if a separate binary
file is supplied. Otherwise, the version control line is expected to immediately
follow the BinaryPattern declaration in the WGL file.

= Binary WGL requires unique end statements for subroutines, loops, and patterns.

Line Type Description

The following discussion describes the syntax for each of the line types.

Version Control

The version control line denotes the binary file version. It is required to be the first line in
the WGL binary section. (Although not planned, it is possible that future versions of the
binary file may have a different format. All future readers, however, will be expected to read
earlier versions of binary files.) The format is:

byte count line type version number version extension

Table 14. Version Control Line Type

Item Type Description
line_type short 0x00ff
version_number short Version 1 is described in this document.
version_extension short Extension number; initially 0

0x0006 O0x00ff 0x0001 0x0000

Start Example

End Example

97

TSSI © 1979-2026

Waveform Generation Language

Pattern Header

The WGL Pattern block begins with a pattern header line. This line defines a pattern name,
and a list of signals and directions. The binary format would be an encoding of this. The
general syntax would be:

byte count line type name len name signal columns
{signal dir signal len signal name bus flag
[begin range end range]}

Table 15. Pattern Header Line Type

Item Type Description
line_type short 0x000a
name_len short Number of characters in pattern group name
name chars Pattern group name
signal_columns | short Total number of signal columns for the
vectors
signal_dir byte Column direction where:

0x00 = input column for a bidir signal,

0x01 = output column for a bidir signal,

0x02 = column direction is not required
because signal is input or output but not

bidirectional
signal_len short Number characters in signal name
signal_name chars Signal name
bus_flag byte Indicates if a signal is a bus: 0x00 = no; 0x01
=yes
begin_range short First value in range; this field is read only

when bus_flag = 0x01

end_range short Second value in range; this field is read only
when bus_flag = 0x01

Example WGL:

Start Example
pattern burst (sigA:I, sigA:0, BX)

End Example

98 TSSI © 1979-2026

Waveform Generation Language

Equivalent binary:

Start Example

0x0021 0x000a 0x0005 "burst" 0x0003 0x00 0x0004 "sigA" 0x00 0x01 0x0004
"sigA" 0x00 0x02 0x0002 "BX" 0x00

End Example
Example WGL, illustrating multiplexed signals: The Signal block contains a multiplexed
parent and four multiplexed children.

Start Example

signal

muxsigl [sigl 1, sigl 2, sigl 3, sigl 4]: mux input;
end
pattern group ALL (sigl)

End Example

Equivalent binary, illustrating multiplexed signals: signal columns is set to four,
indicating the total number of columns of pattern bit information associated with any vector
in the pattern block.

Start Example
0x001la 0x000a 0x0009 “group ALL” 0x0004 0x02 0x0007 “muxsigl” 0x00

End Example

Example WGL, illustrating a bus with no range specification: A data bus can be listed
in the pattern header without specifying the range and order of the bits. (The range and order
specified for a signal within the Signal block is used if none is given on the pattern header.)

Start Example

signal sigl
input;
data[0..7] : input radix binary;

pattern group ALL (sigl, data)

End Example

Equivalent binary, illustrating a bus with no range specification: As specified in the
Signal block, the range for this bus is from 0 to 7. The binary format does not require the
range to be specified on the pattern header if vector information for the bus adheres to this
ordering. signal columns is set to 8§ to indicate the total number of columns of pattern bit
information associated with all vectors in the Pattern blocks.

99

TSSI © 1979-2026

Waveform Generation Language

Also, notice that the bus flag is not set to 0x01 in this example. The bus flag is set to 0x01
only when a range is being specified for output on the pattern header.

Start Example

0x001f 0x000a 0x0009 “group ALL” 0x0009 0x02 0x0004 “sigl” 0x00 0x02
0x0004 “data” 0x00

End Example

Example WGL, illustrating a bus with a range specification: The bus vector information
is found in a different order than as specified in the Signal block. Notice that for the bus
addr, the begin_range values are 4, 0, and 5 and the end range values are 3, 2, and 7.

Start Example

signal
sigl [sigl 1, sigl 2, sigl 3, sigl 4]: mux input;
addr[0..7] : input radix binary;

end

pattern group ALL (sigl, addr[4..3], addr[0..2], addr[5..7])

End Example

Equivalent binary, illustrating a bus with a range specification: signal columns is set to
twelve to indicate the total number of columns of pattern bit information associated with all
vectors in the pattern block. In each case where the range is specified, the bus flag is set to
0x01.

Start Example

0x003B 0x000a 0x0009 “group ALL” 0x000c 0x02 0x0004 “sigl” 0x00 0x02
0x0004 “addr” 0x01 0x0004 0x0003 0x02 0x0004 “addr” 0x01 0x0000 0x0002
0x02 0x0004

“addr” 0x01 0x0005 0x0007

End Example

Individual bus elements may be specified by setting both thebegin range and the
end range to the bus element number.

End Pattern
The WGL Pattern block terminates with an end statement.
byte count line type

Table 16. End Pattern Line Type

100 TSSI © 1979-2026

Waveform Generation Language

Item Type Description
line_type short 0x0002
Example WGL:

Start Example
end

End Example

Equivalent binary:

Start Example

0x0002 0x0002

End Example

Subroutine Header

A WGL Subroutine block begins with a subroutine header line that defines the name of the
subroutine. This name is referenced when the subroutine is called.

byte count line type name

Table 17. Subroutine Header Line Type

Item Type Description
line_type short 0x0001
name chars Characters in subroutine name
Example WGL:

Start Example

subroutine subrO ()

End Example

Equivalent binary:

Start Example

0x0007 0x0001 "subrO"

End Example

End Subroutine

Subroutine blocks require an end statement.

101 TSSI © 1979-2026

Waveform Generation Language

byte count line type
Table 18. End Subroutine Line Type

Item Type Description
line_type short 0x000e
Example WGL:

Start Example

end

End Example

Equivalent binary:

Start Example
0x0002 0x000e

End Example

NOTE
ASCII WGL has one end statement for both Subroutines and Patterns blocks,
while the binary form explicitly provides separate statements for each.

Vector
Vector statements define the parallel, pattern vectors.

byte count line type tp name len tp name map key vectors

Table 19. Vector Line Type

Item Type Description
line_type short 0x0000
tp_name_len | short Number of characters in TimePlate name
tp_name chars TimePlate name
map_key byte Selects the map key
vectors a Vector pattern data

a. Defined by map_key (see “Map Key” below). Os are used to pad the data until the
last byte is complete.

102 TSSI © 1979-2026

Waveform Generation Language

Map Key

A map key is referenced in all vector and scan lines, defining the mapping between WGL
pattern characters and their equivalent binary format. (See Table 20 through Table 23.)
Different map keys can be used for different pattern lines within the same file. For example,
use map key 3 (Table 23) for all vector and scan pattern row lines and use map key 2 (Table
21) for all scan state vector information.

Map key 0 uses three binary bits for every WGL character. It supports all the state characters:
0,1, Z, and X.

Table 20. Map Key 0: Default General Mapping
(map_key = 0x00)

Character Bit Map
0 000
1 001
010
X 011
- 111

Map key 1 provides for representation of scan data although it is not restricted to scan data.
Mapping a WGL character into one bit of information provides for more compact data files.
This mapping is suggested for scan test cases that do not contain Z or X data, only 0 and 1.

Table 21. Map Key 1: Intended for Scan Use
(map_key = 0x01)

Character Bit Map
0 0
1 1
Not used
X Not used
- Not used

103 TSSI © 1979-2026

Waveform Generation Language

Map key 2 provides for representation of scan data that contains the pattern character X in
addition to 0 and 1. A WGL character is mapped into two bits of information.

Table 22. Map Key 2: Intended for Scan Use
(map_key = 0x02)

Character Bit Map
0 00
1 01
Not used
X 11
- Not used

Map key 3 provides general mapping for test cases that do not contain Z data.
A WGL character is mapped into two bits of information

Table 23. Map Key 3: General Mapping (map_key

= 0x03)
Character Bit Map
0 00
1 01
Not used
X 10
- 11

Example WGL:

Start Example

for the pattern header

pattern group ALL (sigl, sig2, sig3, sig4)
this vector row would be encoded:

vector (tpl) := [0 1 1 0];

End Example

Equivalent binary with a map key of 0:

104

TSSI © 1979-2026

Waveform Generation Language

Start Example

0x000a 0x0000 0x0003 "tpl"™ 0x00 000 001 001 00O 0000

~nan pad bits

End Example

Alternate equivalent binary with a map key of 1: A more compact vector representation
could have been done using a different map key.

Start Example

0x0009 0x0000 0x0003 “tpl” 0x01 0 1 1 0 0000

ANAN pad bits

Loop

End Example

In ASCII WGL, the loop statement supports an optional loop name. In the binary format,
the optional loop name is not supported. The binary equivalent of the loop count is
expressed as a 32-bit, unsigned long allowing for the maximum size of loop count.

byte count line type loop count

Table 24. Loop Line Type

Item Type Description
line_type short 0x0003
loop_count long Integer loop count
Example WGL:

Loop 5

Start Example

Equivalent binary:

End Example

Start Example

0x0006 0x0003 0x00000005

End Loop

End Example

In ASCII WGL, the loop end statement supports an optional loop name. In binary format,
the optional loop name is not supported.

105

TSSI © 1979-2026

Waveform Generation Language

byte count line type

Table 25. End Loop Line Type

Item Type Description
line_type short 0x0004
Example WGL:

Start Example

end

End Example

Equivalent binary:

Start Example
0x0002 0x0004

End Example

Subroutine Call
Subroutine calls are followed by the subroutine name.
byte count line type name

Table 26. Subroutine Call Line Type

Item Type Description
line_type short 0x0005
name chars Subroutine name
Example WGL:

Start Example

call subrO{();

End Example

Equivalent binary:

Start Example
0x0007 0x0005 "subrO"

End Example

106

TSSI © 1979-2026

Waveform Generation Language

Repeat

Repeat is used with vectors, loops, or call constructs. Its primary use is on vector lines. This
command always indicates that the next command is to be repeated the specified number of

times. This line type

byte count

is always followed by a 32-bit, unsigned integer.

line type repeat count

Table 27. Repeat Line Type

Item Type Description
line_type short 0x0009
repeat_count | long Number of times to repeat next statement.
Example WGL:
Start Example
repeat 5

Equivalent binary:

End Example

0x0006 0x0009 O

Start Example
x00000005

Scan Parallel

End Example

Two binary line types are required to support a single scan vector as defined in ASCII WGL. In
the binary format, the scan parallel line defines the parallel vector states of all the pins in the same

format as the vecto

r line. This line does not contain any of the scan chain or scan state vector

information. (See “Scan Chain” for state and chain information.)

byte count

line type tp name len tp name map key vector

Table 28. Scan Parallel Line Type

Item Type Description
line_type short 0x0007
tp_name_len | short Number of characters in TimePlate
tp_name chars TimePlate group name

107

TSSI © 1979-2026

Waveform Generation Language

map_key byte Selects the map key

vector a Parallel vector data

a. Defined by map _key (see “Map Key” on page 6-121). Os are used to pad the data
until the last byte is complete.

Example WGL:

Start Example

scan (read) := [0 0 - -]

End Example

Equivalent binary:

Start Example

0x000b 0x0007 0x0004 "read" 0x00 000 000 111 111 0000
AnAn pad bits

End Example

Scan Chain

In ASCII WGL, a scan vector references a scan run which consists of a scan chain, the
direction of the chain, and a state vector. In ASCII WGL, all state vectors are defined within

the ScanState block prior to the pattern block. In addition, the scan state defines the values
of all scan cells in the device in ASCII WGL.

The binary format differs from the ASCII representation. In the binary format, the scan
chain and scan chain direction are still required. But instead of referencing a specific state
vector the state vector data follow in-line. The in-line scan state information represents only
the data which is to be loaded or observed by the specified scan chain.

The scan chain line must follow either a scan parallel line or another scan chain line. The
last chain field identifies the end of the scan chain information.

byte count line type last chain chain dir name len
chain name state bits map key scan states

Table 29. Scan Chain Line Type

Item Type Description

line_type short 0x0008

108 TSSI © 1979-2026

Waveform Generation Language

last_chain byte 0x00 if another chain follows, 0x01 if last in
series
chain_dir byte Scan chain direction where:

0x00 = input chain,
0x01 = output chain,
0xO0f = input/output (feedback) chain

name_len short Number of characters in chain name
chain_name | chars Chain name
state_bits short Number of data bits in the scan state vector

for this chain. That is, the number of data bits
to be loaded or observed for this chain.

map_key byte Selects the map key

scan_states a Scan run pattern data

a. Defined by map_key (see “Map Key” on page 6-121). Os are used to pad the data
until the last byte is complete.

Example WGL: In the ASCII WGL file, ssi_1 refers to a scan state vector containing
011100 as data bits for chain chl on input and sso_1 refers to a state vector containing
011011 as data bits for chain ch1 on output. These state vectors are previously defined
within the ScanState block in the ASCII WGL file.

Start Example

scan(read) := [0 0 - -] {this portion of the vector has already been
specified by the scan parallel binary equivalent }
input[chl : ssi 17,
output[chl : sso 1];

End Example

Equivalent binary: The output scan chain and its corresponding scan state are translated
into binary format using the map key 1 whereas the input chain uses map key 2.

Start Example
0x000e 0x0008 0x00 O0x00 0x0003 "chl"™ 0x0006 0x02 00 01 01 01 00 00 0O 00

0x000d 0x0008 0x01 O0x01 0x0003 "chl"™ 0x0006 0x01 0 1 1 0 1 1 0O

~“" pad bits

End Example

109 TSSI © 1979-2026

Waveform Generation Language

Skip

The reserved word skip provides for the declaration of a time period when the waveform

state is unspecified. In the binary format, the time value, including time units, is provided as
a string.

byte count line type time string

Table 30. Skip Line Type

Item Type Description
line_type short 0x0006
time_string chars Time value, including units, for skip duration
Example WGL:

Start Example

skip 400ns;

End Example

Equivalent binary:

Start Example

0x0007 0x0006 “400ns”

End Example

Annotations

Annotations are attached to the previous line.

byte count line type annotation
Table 31. Annotation Line Type
Item Type Description
line_type short 0x000b
annotation chars Annotation string
Example WGL:

Start Example

{this is an annotation}

End Example

110 TSSI © 1979-2026

Waveform Generation Language

Equivalent binary:

Start Example
0x0017 0x000b "this is an annotation"

End Example

End Binary

To terminate the binary section of the WGL file, use this command. The parser then expects
ASCII WGL to follow. No WGL equivalent exists for this statement.

byte count line type

Table 32. End Binary Line Type

Item Type Description

line_type short 0x000f

Binary format:

Start Example
0x0002 0x000f

End Example

Examples of ASCIlI and the Equivalent Binary

Two examples are provided to illustrate the use of binary pattern data. The first example
shows the handling of scan vectors, and the second example shows subroutine call, loop,
and skip statements. Within each example:

o The original WGL file is shown, followed by

o The WGL file without the pattern block but including a reference to the separate
binary file

o An ASCII version of what the binary portion of the file would look like o Finally,

the binary representation of the pattern block

Example 1

This example contains two scan chains of different lengths.

Example WGL file:

Start Example

111 TSSI © 1979-2026

Waveform Generation Language

waveform patternload pmode[dont care];

signal
sigl tbidir;
sig2 :input;
sig3 :output;
SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUTZ2 : output;

end

scanCell a; b; c; d; e; £; g; h; ii; 3; k; 1; m; n; oo; p; 9; r; s; t; u;
v; w; x; al; bl; cl; dl; el; f1; gl; hl; il; 3j1; k1; 11; ml; nl; ol; end

scanChain chl [sC IN, a, b, ¢, d, e, £, g, h, ii, J, %k, 1, m, n, oo, p,
q, r, s, t, u, v, w, x, SC OUT]; ch2 [SC IN2, al, bl, cl, dl, el, f£fI,
gl, h1, i1, ji1, k1, 11, ml, nl, ol, SC _OUT2Z2]; end

scanState
TDS state0 := chl1(110011100001001000110100) ch2(110011100001001) ;
TDS statel := chl(11X01X10000100X000110X00)
TDS stateX := ;

end

timeplate tpl period 200ns

sigl := bidir[Ops:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[Ops:S];

sig3 := output[Ops:X, 75ns:Q, 95ns:X];

SC_IN, SC IN2:= input[0pS:D];

SC_OUT, SC _OUT2 := output[0pS:X];

end

timeplate scanPlate period 500nS

SC_IN2, SC _IN := input[OpS:P, 100nS:S];

SC_0UTZ2, SC OUT:= output[0pS:X, 300nS:Q, 400nS:X];
sigl := input[0pS:S];

sig2 := input[0pS:D];

sig3 := output[0pS:X];

end

pattern patternO (sigl:I, sigl:0, sig2, sig3, SC IN, sSC OUT, SC INZ,

SC_OUT2)
vector (0, Ops, tpl) := [01 X 2Z2 - - - -1;
scan (scanPlate) := [1 - - - - - - - 1,

112 TSSI © 1979-2026

Waveform Generation Language

input[chl:TDS state(], output[chl:TDS statel],
input[ch2:TDS statel], output[ch2:TDS stateX];
end end

End Example

WGL file referencing binary pattern file: The above WGL file is changed slightly to include a
binarypattern file statement that references the binary pattern file named wgl.bin. Notice that the
ScanState and the Pattern blocks are no longer included in the WGL file.

Start Example

waveform patternload

pmode [dont care]; signal
sigl tbidir;
sig2 :input;
sig3 :output;
SC_IN : input;
SC_OUT : output;
SC_IN2 : input;

SC OUTZ2 : output; end

scanCell a; b; c; d; e; £; g; h; ii; j; k; 1; m; n; oo; p; g; r; s; t; u; v;
w; x; al; bl; cl; dl; el; £f1; gl; hl; il; 31; k1; 11; ml; nl; ol; end

scanChain chl [sC IN, &, b, ¢, 4, e, £, g, h, ii, j, k, 1, m, n, oo, P, g, ¥,
s, t, u, v, w, x, SC OUT]; ch2 [sSC IN2, al, bl, cl, d1, el, f1l, gl, hl, i1,
jl, k1, 11, ml, nl, ol, SC OUT2];

end

timeplate tpl period 200ns

sigl := bidir[Ops:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[Ops:S];

sig3 := output[Ops:X, 75ns:Q, 95ns:X];

SC_IN, SC IN2:= input[0pS:D];

SC_OUT, SC _OUT2 := output[0pS:X]; end

timeplate scanPlate period 500nS
SC_IN2, SC IN := input[OpS:P, 100nS:S];
SC_0UT2, SC OUT:= output[0pS:X, 300nS:Q, 400nS:X];
sigl := input[0pS:S];
sig2 := input[0pS:D];
sig3 := output[0pS:X];
end

binarypattern file := wgl.bin;

end

113

TSSI © 1979-2026

Waveform Generation Language

End Example

ASCII representation of the binary pattern file wgl.bin: This section is only an illustration of
what the binary WGL looks like. It shows the unique line types and their ordering. Scan
information follows the scan row and contains a direction, a chain name, and the state
information. End statements for the completion of the pattern section and the binary file are
required.

Start Example

{ Version "1.0" }
pattern patternO (sigl:I, sigl:0, sig2, sig3, SC_IN, SC OUT, SC INZ,

SC_OUT2)
vector (tpl) := [0 1 X Z2 - - - -]
scan (scanplate) := [1 - - - - - - -]

input[“*chl1”: 11 0011100001001 0001101O00T1,
output[“chl1l”: 1 1 X 01 X1 0000100X000110X0601],
input[“ch2”: 11 001 11000010011,

output[“"ch2”:X X X X X X X X X X X X X X X];

end { pattern }

end { binary }

End Example
Binary representation: The following is the binary equivalent for the pattern section shown
above. For simplicity, signal names, TimePlate names, and scan chain names are shown here as
strings instead of in binary, and the Ox notation, indicating hexadecimal, is not included.

In this example, vector information for tpl and scanPlate is specified using map key 0. The input
state vector information for chl and ch2 is specified using map key 1. The output state vector
information for chl and ch2 is specified using map key 2.

Start Example

0006 00ff 0001 0000

0056 000a 0008 "pattern0" 0008 00 0004 "sigl" 00 01 0004 "sigl" 00 02 0004 "sig2" 00 02 0004 "sig3" 00
02 0005 “SC_IN 00 02 0006 “SC_OUT” 00 02 0006 “SC_IN2” 00 02 0007 “SC_OUT2 00 ”
000b 0000 0003 "tpl"™ 00 05 af ff

0011 0007 0009 "scanPlate"™ 03 7f ff

000f 0008 0000 0003 “chl” 00 18 01 ce 12 34

0012 0008 0001 0003 “chl” 00 18 02 5c 74 01 Oc 05 30

000e 0008 0000 0003 “ch2” 00 Of 01 ce 12

0010 0008 0101 0003 “ch2” 00 0Of 02 ff ff ff fc

0002 0002

0002 000f

End Example

114 TSSI © 1979-2026

Waveform Generation Language

Example 2

This example has subroutine, loop, and skip statements, and an annotation. Example WGL file:

Start Example

waveform patternload pmode[dont care];

signal
sigl tbidir;
sig2 :input;
sig3 :output;
end

timeplate tpl period 200ns
sigl := bidir[Ops:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 input[0Ops:S];
sig3 output [Ops:X, 75ns:Q, 95ns:X];

end

timeplate readl period 200ns

sigl := bidir[Ops:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q,
175ns:X]; sig2 := input[Ops:U];

sig3 := output[Ops:X];

end

timeplate write period 200ns

sigl := bidir[Ops:X, 75ns:Q, 95ns:X, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[Ops:S];
sig3 := output[Ops:X, 75ns:Q, 95ns:X];

end

pattern patternO0 (sigl:I, sigl:0, sig2, sig3)

vector (0, tpl) := [01 X Z];

vector (+, readl) := [1 1 - - 1; {this is commentA}
loop 5

vector (+, write) := [X X X X];

vector (+, readl) = [1 0 X -];{DXY test}

end {end loop}

call subO();

end {end pattern block}

subroutine subO ()
skip 400ns;

115 TSSI © 1979-2026

Waveform Generation Language

vector (+, write) := [0 0 0 O];
end {end subroutine }

end {end waveform}

End Example
WGL file referencing binary pattern file:

Start Example

waveform patternload pmode[dont care];

signal
sigl :bidir;
sig2 :input;
sig3 routput;
end

timeplate tpl period 200ns

sigl := bidir[Ops:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[Ops:S];
sig3 := output[Ops:X, 75ns:Q, 95ns:X]; end

timeplate readl period 200ns

sigl := bidir[Ops:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[Ops:U];
sig3 := output[Ops:X];

end

timeplate write period 200ns

sigl := bidir[0Ops:X, 75ns:Q, 95ns:X, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[Ops:S];
sig3 := output[Ops:X, 75ns:Q, 95ns:X]; end

binarypattern file:=wgl.bin;

end

End Example

ASCII representation of the binary pattern file wgl.bin: This section is only an illustration
of what the binary WGL looks like. It shows the unique line types and their ordering.

Start Example

{ Version "1.0" }

pattern pattern0 (sigl:I, sigl:0, sig2, sig3)

116 TSSI © 1979-2026

Waveform Generation Language

vector (tpl) := [0 1 X Z];
vector (readl) := [1 1 - -];{ this is commentA }
loop 5
vector (write) := [X X X X];
vector (readl) := [- - - -];{ DXY test }
end

call subO ()
end

subroutine subO ()

skip 400ns;

vector (write) := [0 0 0 O 1;
end

end

End Example

Binary representation: The following is the binary equivalent for the pattern section shown
above. For simplicity, signal names, TimePlate names, and subroutine names are shown here as
strings instead of in binary, and the 0Ox notation, indicating hexadecimal, is not included. The
vector information is specified using map key 0.

Start Example

0006 00ff 0001 0000

002e 000a 0008 "patternO"™ 0004 00 0004 "sigl"™ 00 01 0004 "sigl"™ 00 02
0004 "sig2™ 00 02 0004 "sig3" 00
000a 0000 0003 "tpl"™ 00 05 aol
000b 0000 0005 “readl” 03 5f
0012 000b “this is commentA”
0006 0003 0000 0005

000b 0000 0005 “write” 02 ff
000b 0000 0005 “readl” 03 4b
000a 000b “DXY test”

0002 0004

0006 0005 “sub0”

0002 0002

0006 0001 “subOQ”

0007 0006 “400ns”

000c 0000 0005 “write” 00 00 00
0002 000e

0002 000f

End Example

117 TSSI © 1979-2026

Waveform Generation Language

Glossary of WGL Terminology

All user-defined identifiers, such as <TDSstate>, used in the WGL BNF representation are found
in this glossary. (A string is a sequence of characters surrounded by double quotation marks.
Embedded double quotation marks and back slashes must be preceded by a back slash.)

any explanatory text
The text of a comment.

atepinName
An identifier or string previously declared as an ATE pin name in the Signals block. bitNumber
A number specifying a single bit of a multi-bit bus.

If you specify a range (<bitNumber> .. <bitNumber>), the firsthitNumber defines the most
significant bit (MSB); the secondbitNumber defines the least significant bit (LSB). There is no
restriction on which number is larger. (The bits of the register may be labeled in increasing or
decreasing order.)

cellName

An identifier or string naming a scan cell. Must be unique among all signals, buses, groups, scan

chains, scan registers, and other cells.
chainName

An identifier or string naming a scan chain. Must be unique among all signals, buses, groups, scan
cells, scan registers, and other scan chains.

cycleNumber

The numeric cycle number of a pattern vector.
edgeCount

A number indicating the number of edges associated with a timing generator.
edgeNumber

The index of a particular edge of a timing generator.

end-of-line

118 TSSI © 1979-2026

Waveform Generation Language

The end of line indicator.
equationSheetName

An identifier or string naming an EquationSheet block.
exprSetName

An identifier or string naming an ExprSet sub-block.
fileName

The alphanumeric include file name. May be optionally enclosed in double quotation marks (“)
or angle brackets (<>).

floatingPointValue

A number containing the digits 0 - 9 and one decimal point (.).
formatName

An identifier or string naming a tester-specific format. Must be unique among all format names.
identifier

The alphanumeric name of a signal, bus, group, TimePlate, format, timegen, pattern, subroutine,
et cetera. Identifiers are made up of a sequence of characters that does not include any of the following
delimiters: # { } “” .. () +,:; [] or white space. Identifiers may not begin with a digit or exactly
match any reserved keyword. Names that violate these rules may generally be used provided they are
enclosed in double quotation marks and any embedded double quotation mark or back slash characters
are preceded with a back slash.

integerValue

A number containing the digits 0 - 9.
loopCount

A number specifying the iteration count of a pattern loop.
loopName

An identifier tagging a pattern loop begin and end statements. These are for documentation
purposes only.

TSSI © 1979-2026

Waveform Generation Language

macroBody

The text that makes up the body of a macro definition.
macroName

An identifier used in a macro definition or its invocation.
macroParameter

An identifier used as a parameter in a macro definition.
MuxPartName

An identifier associating a particular ATE resource as a source for pattern data to a multiplexed
signal or bus. Within a Signals block, reference a <MuxPartName> only once.

patternidentifier

An identifier assigned to a particular pattern expression in a symbolic block that may be used in
pattern and subroutine blocks as an alias for that pattern expression.

patternName

An identifier naming a pattern block that also may identify a tester-specific pattern load (also

called a burst). <patternName>s are saved in the database.
patternNameStr

An identifier naming a pattern block that also may identify a tester-specific pattern load (also
called a burst). String notation allows the use of characters not otherwise permitted.
<patternNameStr>s are saved in the database.

pinElemName
A string identifying an ATE pin.
pinGrpName
A unique identifier for a group.
pinName
An identifier string, or number identifying the name of a DUT or ATE pin.

pinNumber

TSSI © 1979-2026

Waveform Generation Language

An identifie,r string, or number identifying the number of a DUT or ATE pin.
registerName

An identifier or string naming a tester-specific format register. Must be unique among all
register names.

repeatCount

A number specifying the number of times a pattern vector is to be repeated.
signalName

An identifier or string specifying the name of a signal, group, or bus.
stateName

An identifier or string naming a particular set of logic state values stored in all scan cells. Must be
unique among all other state names.

stateString

A sequence of pattern state characters or numbers appearing in a pattern row interpreted
according to the width, direction, and radix of the corresponding pattern parameter.

subroutineName

An identifier naming a subroutine declaration or invocation.
timeGenName

An identifier or string naming a tester-specific timing generator.
timeplateName

An identifier naming a TDS timing template. It is defined in a TimePlate block that is referenced
in a vector address in a pattern block. Must be unique among all TimePlate names.

timeValue
A number, optionally including a decimal point, specifying a particular time.
TDSstate

A single character that can be any of D, U, N, Z, S, C, P, L, H, X, T, Q, R, 0, 1, F, ?. Case is

significant.

121 TSSI © 1979-2026

Waveform Generation Language

tsNumber
A numeric value used to identify individual timing sets.
validityClause

A signal name and state value as used in a Signal Definition file. (See the “Use-rDefined Files”
chapter, found in this guide, for the syntax requirements of the Signal Definition file.) Use this
clause within the strobe clause to specify the direction of a signal based on another signal’s state
value.

variableName

An identifier or string naming an equation variable.
vectorLabel

An identifier or string ...
waveFormName

An identifier or string naming the waveform program. This name is for documentation
purposes only. It is not stored in the WDB database.

122

TSSI © 1979-2026

Waveform Generation Language

Index
WaAVESFOIrmM GENEIALIONc....eeeeeeeeieeeeniiiiiiiesseiiiieeseeniesseessissssassssssssssessssssssssssnssssssnsssssssssssssssnsnsns 1
1010 Yo [Lot 1 [T TSN 1
WGL LaNGUAGE CONVENLIONS..........ceueeeeeeieeeireeireeireeireairesisessreasrmessnsssssssnsssnsssnsssnssrnsssnsssnsssnsssnsssnsannnns 1
WGL Syntax Notation CONVENTIONSc.ciiieiiieiiieiiiiniiieiiiiiiieeiiiieiiinieiesssrenstsssssnsssssssssssssssnssssnssssnssssnns 2
800 T 3T 3 =T 1 N 3
IA@NEIFIEIS ..o ittt se s e e e e s e s e s s e r e s e s s e na s s s enasssssenassssnensssssennsssssennssssnennsssssennssssnenassssnnnnns 4
[\ LT 1] o =T RN 4
RESEIVEA WOKS.....ceeeeiiiiiiiciiiiicitieeierereeeereraseeresasssesenasssssenesssssenssssseenssssseensssssennsssssennsssssennsssssennssssnnnans 4
L3 T = £ N 5
WGL SYNEAX ccueueeieeiiniiiiiiiiiiieiieiieeiieiieisisinssesissssessessessassassesssssssssssssssassnssssssssssssssssssnssnsssssssssssssssnssnssn 5
GENEIAl SYNEAX .. iiiiiiiiiiiiiiiiiitiiiiiieaiitiieiiiriteseistieseestresssssirsssssstesssssstesssssstenssssssesssssssenssssstsnssssssenssssssannes 6
Multi-time Domain Waveform BIOCKSuiiii ittt e et e e e e e are e e e e e s e bbaeeeeeenanaaeeeeeeanreeeeeenen 6
Free-running and ASYNCHIONOUS CLOCKScc.ueiiiuiieciie ettt eee e s e e e e e e e ate e e sate e e esteeesneeeesnsneeennseeennnas 6
Details of a Typical Single WGL Waveform BIOCKoocuuii ittt e tte e s tae e et s e eara e e s tae e e an e e enneas 8
Program BlOCK SYNtaX.....cccceiiiiiiuiiiiiinuiiiiiiniiiiiiiieiiremieiiramieiisssestesmsssstesssssstesssssssessssssssnsssssssssssssssnssssssen 12
GeNeric Program BlOCKS........ccuuiiiieeuierieencereneneeereneneesrennseesrensssserenssssssenssssssenssssssensssssenssssssennssssnennssssnennns 13
Y T4 0 = £ USRS 14
YT o (o 2T Y= g =] PRSPPIt 15
2T] <SPPSR PPPPPPRt 16
Gl OU P S . ttttettititeeieieteeae ettt erabete ettt et teeeeeeeeaeesesasasssssssssnssssssssaseseeeeesasaeaesessesssesssssnsnsssssssssssseseseseseseseesesesnenenensnsansnssssssnnnsnnnnnns 16
L PP P PP PP PPUPPPP TN 17
F V1 PSP PPPPUPPP N 17
F 0 16 1= U N PP PPUPRRRN 17
ALLBIDIR .ceteteetteteteteet et ettt et et e eeeeeaeeeesesass s s s e bs b et ettt et et et e e e eaeaeaeesesae s aannnrabab bt et eeatetaeaeeeeeeeesesenaasananann 17
ALLMUX ettt ettt e et et e eaeeeaeesesesassa s s s sabe b st e e e e e e e e et aeaaaeeeesesesasnssnssssssssssnsesnsnseneneneeeeeeeeeeenenennnnanannns 17
MUILIPIEXEA SIZNAIS OF BUSES ..cc.uvieeiiiieeeiiiieeiteeeitee e ettt eeitteesstbeeeetteeaesaeeaassaeeastaseesssessssseeaastsseanssssesssseeassesesnssessnssesasssenasnns 17
E Y =T o o TP PRSPPI 18
Y or= T =] | RO UTRRUOPUPPTRRRIOt 23
Yo 4] =) (= I PSP P PP PP PP RRURORPRPRPIRE 24
RYor [o IO - 1 1o WS USSR 26
THMEPIALES. ...eeeeeeeee ettt ettt e e ettt e et e e e e tee e e teeeeaabeeeeabaeesabeseasbeseassaeeeabaseanseeeeassaaeaabeeeastaeeasseeeanbaeeasbeeeasbeeeanteeaanns 29
o 11 1= o 1P PPPPPPUR N 34

123 TSSI © 1979-2026

Waveform Generation Language

SUDTOUTINES cuvveie i ettt ettt ettt e eetb e e e e eteaba e e e eeses bbb e e eeeeebabaeeesesastaseeeesasbaeseeesasbasaeeeeassbaseesesassaaseessenssssseseeeassreneesesnntes 45

377 4] o To] LToX 3OO SSPRUP 46
Equation-Specific Program BIOCKScccieeiiieieieeiiieiiteeerincereniereeeteaserenseernsseresseressessnssssnsessnssssansssnssesnnnes 49
o TU =L (o] g Y V=T SRR 50
EQUATIONDETAUILSeviieeiiee ettt e e st e e et e e e ta e e e et tee e e taee s baaeesteeeesssaesssaeaastasaansaesansasaeassaeessseessseessssasannns 61
Tester-Specific Program BIOCKScciiuuiiiiieiiiiiiiiiiiiiieiiieieiireneeiieesseiisssssiisssssiissssssssssssssssssssssssnssssns 66
20 010 = | 3P PRRPRPNE 66
=T oA 1 (=T T PP PP PP PPPPPUP N 68
LT T o TU T o LT PP PP PPPPTPP N 69
THMIEGENS «.eeeeeettt ettt e ettt eee et e e et e eeeae st eaaeeeeeesesessasaaaaseesesesssssssssannsesesessssssasssnnnaesesessessssnssnnnesesesessssssssnnnnnseeeeessesssres 71

BT 011 T == PP PR PUPPRPP 72
VYo Lo [Lo T g Lo | I =00 [{0 g =X 74
IVTACKOS .uieiiniieiieieiieiieiteitettetteetestastestastessestossastossassessasssssssssssasssssassassassassasses 74
Y Yol gl D=y i TaTi o) o OO RPN 75

Y = Tol g0 X [91V Tor- 1 o] o S URPRPNt 76
Definition and INVOCAtioN WItNOUTL ParamEtersScooiiiiiiiiiiiiiiiiiittreee e ee ettt et et e s e s bbb e aaa e e erereseeaeeeeeeeesessesannnnes 76
Definition and INVOCATION WITh PAramMETErSooiiiiiiiiiiiiieiececeteer e e e ettt et e e e e s e s e s ab e b s e e e eeereeeseeseaeseseesessnsnnnnes 77

[Lol 0T [] [Ty 79
131 3o &1 4 o] 5 Ly PRPRN 80
(] [o] e =1 1Y o T [N 81
o] aaToTo L=l Y o TV Lo <SSR P 81
EXOIMIPIES c..eeeeeeeeeeeenereeeeeeiererenrerensesenssessasessassesnssesensessassssnssesssssssnssssnssessssessnssssnssessnsessnssssnssessnssssnne 83
Using WGL Macros and Include Files to Simplify TeStiNgccccivuiiiieiiiiiiiiiiiiiiciiiiicierereecsrneecenesesensssnesesennes 83
Using WGL to Support Scan Test HAardWarecciveeeiiiiiieiciiiriciienscsrcnesessenassessenassesssnsssssssnsssssssnsssssens 88
UsSiNg ANNOAtioNs iN WGL.....cccuiiiiuiiiiiiieniitniiieeinieniitneietessirsaerenssssasssenssssnssssssssssnsessnssssnssssnssssnnsssnssssnnnes 91
BiNAIY WGL......c...eueeneeereeeeeireeieeeerensseasreesssessssssssssssssnsssnsssnsssnsesnsssnsssnsssnsssnsesnsesnsesnsesnsssnsasnsesnsasnnnen 92
WGL BiNary INterfaceccceuiiieiiiiiiiiiiiiiii i creeeteaeteneeereseteesesensesensssenssssnsssssnsesensessnssssnssssnsssssnssssnsensnssnes 92
BiNary File FOrMAt........ciiiieiiiiiiiciiieecireeese s rrnesesesneseesernnsssenasssssenasssssennsssssennssssesnsssssesnssnssesnsssssennssnsnenn 95
DTN Ao Y1 Ao T E OO RO 95

[T g o o 3 0 - | AR UPPRRRPNE 95
T Y/ o TSP PP TPTPPPPPN 96
[T IV T @ o =T o TV -SSR 97
T Y o=l B 1LY ol g oY o o PSRN 97
Examples of ASCIl and the EqQuUivalent BiNary.....cccccccciieiiieiiiiiiieiiiiecieecenieniitneiereeserensssesessassssnsessnssssnns 111
EXAMPIE L.ttt ettt et b e s h et e b e e a bt e bt e e a b e e bt sat e e bt e e Rt e e b e e e b e e b et e bt e Rt e e b e e eabe e beesabe e bt e sareenbeeeareenes 111
T 1 4 o L0 115

124 TSSI © 1979-2026

Waveform Generation Language

Glossary of WGL Terminologycceeeeuuecerveeniiiiienniininnesissimmmsssssmsssssssssmssssmssssssssssssssssssssssssssssssns 118
E Y =T o 110 LV T = 118
o] |1V 4 = 118
EUBECOUNTceeeiiieeeiiieeree e rrteeeerreneseseenesseseensssssernsssssennsssssennsssssennsssseennssssesnsssssesnssnssesnssssnennssssnenn 118
eQUAtIONSNEEINGMEE .. ettt e reeerea e sen s ssassstnesssenssssnsssensssenssssnssssnsssssnsssensssensssanns 119
LLT=T LV . 4T 119
floAtiNGPOINTVAIUEcceeeceeeee et e e s et e e s e re e e s e ra e s e e nassessenssssseenssssseensssssenasssssennssssnennnnnssennns 119
[0 1=T 4L =T 119
JOOPCOUNT ... cceeeceiieieiriteeeerreaeerrenneesrennsseseennsseseennsssseenssssseenssssseenssssseenssssseensssssesnsssssesnsssssennssssnnnnnnnns 119
MACTOBOAY ...iiiiiiiiiiiiiiiiiiiiiiiiireierireserireseerieesssetttsssssttssssssstssssssttsssssssesssssstesssssssesssssssesssssssesssssssannenns 120
IMUXPArTNGME ccuuiiiiiniiiiiiiniiiiiiiiiniieiiiiiieeieitiessieitiessieiersssistirsssestersssesstrsssessessssessessssessessssessessssessansssens 120
[4 =T 0] Lo [T a4 =T T 120
LT=Y <13 =T T 1 121
= 1 2= 1 = 1 4TS 121
£ 1) T - 121
10T o TV T 1=\ =Ty = 121
LT 0 1T o= T = 121
BMEVAIUR ... s s 121
L 11T 1187000 - 122
WaAVEFOIMNAME...c...iiiiiiiiriiiiiitiiiiiiiieieiie i terasisteaasiesteasssstesssesseesssssenssssstensssessenssssssenssssssannss 122

Copyright and USAQE NOLICE.........cccuueerrieuniiirineniisiieniisiiseiisisssiissssmisssssmssssssssssssssssssssssssssssssssssss 126

F20=] [1 Lo [0 Lo Lol ¥ 1= 1 1 N 126

(80 T 1 (o ot U 126

125 TSSI © 1979-2026

Waveform Generation Language

Copyright and Usage Notice

Copyright © 1979-2026 Test Systems Strategies Inc (“TSSI”). All rights reserved.

This document has been voluntarily contributed by Test Systems Strategies Inc to serve as an open
industry standard for the benefit of the semiconductor design and test communities. It is intended for
widespread adoption and reference across both non-commercial and commercial applications.

The author retains full copyright but grants permission for this document to be used, reproduced, and
distributed — including for commercial purposes — provided that:

e The content is not altered.
e Proper attribution is given to the author: Test Systems Strategies Inc (“TSSI”).
e The document is not misrepresented as being authored by others.

Adoption of this standard does not imply endorsement or warranty by the author.

Related Documents

e Test Control Language. This document is part of TSSI product suites to provide control over
test program writing modules, known as WaveBridges and TesterBridges. Contact TSSI for a

copy.

Contact

TSSI World Headquarters

500 SW 116%™ Avenue, 4t Floor
Beaverton, Oregon 97225

USA

Email: info@tessi.com

Website: www.tessi.com/contact-us

126 TSSI © 1979-2026

mailto:info@tessi.com
http://www.tessi.com/contact-us

	Waveform Generation
	Introduction
	WGL Language Conventions
	WGL Syntax Notation Conventions
	NOTE

	Comments
	Identifiers
	Numbers
	Reserved Words
	Strings

	WGL Syntax
	General Syntax
	Multi-time Domain Waveform Blocks
	Free-running and Asynchronous Clocks
	Details of a Typical Single WGL Waveform Block

	Program Block Syntax
	Generic Program Blocks
	Signals
	Single-Bit Signals
	Buses
	Groups
	ALL
	ALLINPUT
	ALLOUTPUT
	ALLBIDIR
	ALLMUX
	Multiplexed Signals or Buses
	atepin
	NOTE
	direction
	freerunningclock
	Strobe Clause
	dutpin
	mux
	initialp
	Radix

	Scan Cells
	Scan State
	Scan Chain
	TimePlates
	NOTE
	NOTE
	NOTE

	Patterns
	Subroutines
	Symbolics

	Equation-Specific Program Blocks
	NOTE
	EquationSheet
	ExprSet
	Variables
	Constants
	Expressions
	Operators and Incrementors
	Built-ins
	Annotations
	Scaling
	Units of Measurement
	Minimum and Maximum Ranges

	EquationDefaults

	Tester-Specific Program Blocks
	Formats
	NOTE
	Table 8. WGL-pattern-state to TDS-logic-state mapping

	Registers
	Pin Groups
	NOTE

	TimeGens
	TimingSets
	NOTE

	Additional Features
	Macros
	Macro Definition
	Macro Invocation
	Definition and Invocation without Parameters
	Definition and Invocation with Parameters

	Include Files
	Annotations
	Global Mode
	pmode Attribute
	Table 10. P Mode definitions

	Examples
	Using WGL Macros and Include Files to Simplify Testing
	NOTE

	Using WGL to Support Scan Test Hardware
	Using Annotations in WGL

	Binary WGL
	WGL Binary Interface
	Binary File Format
	Definitions
	Line Format
	Line Type
	Line Type Ordering
	Line Type Description
	Version Control
	Pattern Header
	End Pattern
	Subroutine Header
	End Subroutine
	NOTE

	Vector
	Table 20. Map Key 0: Default General Mapping (map_key = 0x00)
	Table 21. Map Key 1: Intended for Scan Use (map_key = 0x01)
	Table 22. Map Key 2: Intended for Scan Use (map_key = 0x02)
	Table 23. Map Key 3: General Mapping (map_key = 0x03)

	Loop
	End Loop
	Subroutine Call
	Repeat
	Scan Parallel
	Scan Chain
	Skip
	Annotations
	End Binary

	Examples of ASCII and the Equivalent Binary
	Example 1
	Example 2

	Glossary of WGL Terminology
	atepinName
	cellName
	edgeCount
	equationSheetName
	fileName
	floatingPointValue
	identifier
	loopCount
	macroBody
	MuxPartName
	patternIdentifier
	registerName
	stateName
	stateString
	subroutineName
	timeplateName
	timeValue
	validityClause
	waveFormName

	Copyright and Usage Notice
	Related Documents
	Contact

