

TSSI © 1979-2026

1

 Waveform Generation

Language
2026.0

Introduction
Waveform Generation Language (WGL), by Test Systems Strategies, Inc. (TSSI), is a data

description language. It is used to convey an editable ASCII representation of the data

between design and test.

For large volume of data, especially with scan data, a binary format for the ScanState and

Pattern sections is supported, to be used (if desired) in place of ASCII pattern data. (Do

not edit a WGL file that contains binary pattern data; null pattern bits may be deleted by

the editor.)

WGL supports both scan hardware and test program generation that uses defined variables

and embedded equation expressions.

WGL Language Conventions
The WGL language is free-form (multiple white spaces are treated as a single white space

and line returns are ignored) and limited to a line length of 512 characters. WGL reserved

words are not case sensitive; keywords may be entered in any mix of upper and lower case

letters. For user-defined names and pattern state characters, case is significant. The language

uses the ASCII set of printable characters as legal input characters. WGL supports such

features as macros, include files, in-line comments, post-compilation annotation, and many

other operations normally available in programming languages.

Wherever “TDS” is mentioned, it represents a TSSI product that was introduced at the same

time as the WGL creation. Stands for Test Development Series, TDS was the first

application that uses the WGL standard. Hence, the state characters in WGL are often

referred as TDS states, or TDSstate. TDS has gone through transformation and become the

Waveform Generation Language

TSSI © 1979-2026

2

latest TSSI product called Solstice-TDS. In this specification, TDS and Solstice-TDS will

be used interchangeably.

Wherever “WDB” is mentioned, it represents a structured random access database that is a

binary equivalent of WGL. WDB stands for Waveform DataBase or WGL DataBase,

interchangeably. The purpose for having WDB as a tester-neutral database is to enable

programable data exchange between the design tools and the various tester environments.

TSSI pattern conversion product provides a suite of WDB database clients for test program

development to all leading automatic test equipment (ATE) formats. The database clients

can also re-generate Verilog testbench for design re-simulation.

A library of application programming interface (API) for the WDB is also available for end

users to develop their own proprietary database clients.

WGL Syntax Notation Conventions
In describing the syntax of WGL, the following variation of the Backus-Naur Formalism

(BNF) is used:

▪ Two colons followed by an equivalence sign (::=) denote a syntactic category to

syntactic rules relationship.

▪ Double quotation marks (“ ”) or bold typeface denote the literal use of a reserved

word, typographical symbol, or parameter. If double quotation marks are to be used

literally, they are enclosed within single quotation marks (‘ ’).

▪ Angle brackets (< >) denote the use of a user-defined name, integer or floating number.

▪ An equivalence sign (=) denotes the definition of a WGL reserved word or lexical primitive.

▪ Brackets ([]) denote optional syntax, appearing 0 or one time.

▪ Braces ({ }) denote an unspecified repetition (0 ton times) of the enclosed syntax.

(This notation implies that the enclosed syntax is optional, since zero repetitions of a

syntax is optional usage.)

▪ A vertical bar (|) denotes separate choices of syntax.

▪ Parentheses (()) denote grouping of syntax options.

The use of italics in a text reference to a WGL syntactical element indicates higher-level

BNF constructs. Such constructs are expanded to their full definition in the BNF

accompanying the reference. For example, references to FormatDecl would appear in the

appropriate BNF production as follows:

FormatDecl ::= <formatName> “:” “[” <TDSstate> { “,” <TDSstate> } “]” “;”

Waveform Generation Language

TSSI © 1979-2026

3

User-defined identifiers, such as <TDSstate>, are defined in the last section: “Glossary of WGL

Terminology”.

NOTE
Do not confuse the BNF use of such typographical symbols as braces ({ })

with WGL’s use of the same symbol. BNF uses braces to show a repetition of

the action enclosed within the braces, while WGL uses braces to mark database

annotations.

Comments
As in other programming languages, you can add explanatory comments to a

WGL program to aid functional clarity.

These comments are preceded by the pound sign (#), and are not included in the WDB, the

binary database output when the TDS WGL In Converter tool is run.

Third party tools can decide on what to do with WGL comments.

Comments can be inserted into any part of a WGL program except WGL annotations.
1
 (See

“Annotations”) To insert a comment into a WGL program, enter a pound sign (#), followed

by a text string. All characters on the line, starting with the pound sign and the terminating

with the carriage return marking the end of the line, are included in the comment.

A complete BNF syntactical representation of the Comment feature follows.

Comment ::= “#” <any explanatory text> <end-of-line>

Example of WGL comments in a WGL program:

Signal block

signal

clk: input; # system clock dataReady:

output; in: input;

readWrite: bidir;

data [0..31]: bidir; # 32-bit data bus

addr [0..15]: input; # 16-bit address bus

1 . The binary pattern file cannot have comments, only annotations.

Start Example

Waveform Generation Language

TSSI © 1979-2026

4

end

Identifiers
An identifier is the alphanumeric name of a signal, bus, group, TimePlate, format, timing

generator, pattern, subroutine, et cetera. Identifiers must begin with an alphabetic character,

and may not contain white space (such as blanks, tabs, and newline characters) or any of

the following delimiting characters:

Identifiers must not conflict with any of the WGL reserved words. Any names that contain

special characters or reserved words must be entered as a string surrounded by double

quotation marks (“ ”).

In the WGL syntax descriptions in this chapter, identifiers are enclosed in angle brackets

(< >).

Numbers
Unless noted otherwise, user-defined numeric values are integers that range from zero to

the maximum integer that can be represented on your system’s architecture. Any

exceptions are noted in the appropriate WGL syntax description section of this chapter.

In the WGL syntax descriptions in this chapter, user-defined numeric values are enclosed

in angle brackets (< >).

Reserved Words
WGL reserves certain words as its linguistic set, from which data descriptions and

procedural instructions can be synthesized. These reserved words can appear only in

WGL statements in the correct syntax.

(pound sign)
{ (left brace)
} (right brace)
“ (left double quotation marks)
” (right double quotation marks)
.. (double periods)

((left parenthesis)
) (right parenthesis)

+ (plus sign)
, (comma)
: (colon)
; (semi-colon)
[(left bracket)
] (right bracket)
. (period)

End Example

Waveform Generation Language

TSSI © 1979-2026

5

The following list shows the WGL reserved words:

atepin

bidir

binary

boolean
call
channel

compare

decimal

direction

dont_care

dutpin

edge
end
equationdefaults

equationsheet

event

exprset feedback
for

force force_or_z

format

freerunningclock

hex

hexadecimal
i
in

initial

input

integer

last_drive

last_force

leadingedge
loop
macro

ms

mux

ns

o
octal

offstate

out

output

pattern

period

pingroup

pmode

procedure

ps
radix

reference

register

repeat

scan

scancell

scanchain

scanstate

signal

skip

subroutine

symbolic

tg

time

timegen

timeplate

timeset

timing

to
us
vector

wavedata

waveform

when

window

datacount

wide

Unlike conventional programming languages, WGL cannot restrict or filter the use of

reserved words. If a design has a signal name (or any other application-specific name) that

conflicts with any of the WGL reserved words, the signal name must be enclosed by

double quotation marks (“ ”) to differentiate the signal name from the reserved word.

This must be done throughout the program wherever the signal name occurs.

Strings
Strings are any sequence of characters surrounded by double quotation marks (“ ”).

Within a string, if you want to use double quotation marks, you must precede each

occurrence with a back slash (\). If you want to use a back slash within a string, you

must precede each occurrence with a back slash. For example, the string: \design“1”\

The equivalent WGL syntax is:

“\\design\“1\”\\”

WGL Syntax
WGL is a block-structured language. The body of the WGL program comprises one large

structure, bracketed by opening and closing statements. Within the overall structure are

smaller, more specialized structures, or blocks, each bracketed by opening and closing

statements. A discussion of WGL’s syntactic elements follows.

Waveform Generation Language

TSSI © 1979-2026

6

General Syntax
In its simplest form, a WGL source file requires at least one waveform block with the

following syntax:

waveform <waveFormName> [WaveformParameters]

{ WaveformBlocks }

end

A waveform block is self contained with essentials blocks such as signals, timings, and

patterns to be described in the WaveformBlocks .

 Multi-time Domain Waveform Blocks

For devices with multiple time domains (especially when the domains are asynchronous

to one another), multiple waveform blocks can be defined in one WGL source file.

Such WGL can be translated directly to a target tester that supports multi-time domain

applications. Otherwise, pattern conversion tools should merge the multiple waveform

blocks to fit a target tester that has no multi-time domain capability.

 Free-running and Asynchronous Clocks

Even though a recommended way to specify a free-running clock or asynchronous clock

is in the Signals block (see Signals), a special case of multi-time domain WGL file can

be made to define these clocks. It’s simply an option to use Waveform Blocks as opposed

to a Signals Block.

Each of the free-running clocks and asynchronous clocks should be defined in a

waveform block of its own time domain using a special reserve word,

freerunningclock, in the waveform block’s [WaveformParameters].

For example:

waveform generic (generic_domain)

signal

sig1 : input;

sig2 : input;

 end

 timeplate tp period 10ns

 sig1 := input[0ps:P, 5ns:S];

 sig2 := input[0ps:P, 5ns:S];

 end

Start Example

Waveform Generation Language

TSSI © 1979-2026

7

 pattern pat (sig1, sig2)

 vector(+, tp) := [0 0];

 vector(+, tp) := [0 1];

 vector(+, tp) := [1 0];

 vector(+, tp) := [1 1];

 vector(+, tp) := [0 0];

 vector(+, tp) := [0 1];

 end

end

waveform async_clocks (freerunningclock aclk1_domain)

 signal

 aclk : input;

 end

 timeplate tp_aclk period 7.5ns:

 aclk := input[0ps:D, 4ns:U];

 end

 pattern pat_aclk (aclk)

 vector(+, aclk) := [-];

 end

end

Note that in the example above, the pattern block for the aclk only has to declare 1

pattern row. If the target tester has the capability to program a free-running and/or

asynchronous clock then the timing defined in the timeplate is sufficient to program the

clock.

Alternatively, if aclk is to be programmed by patterns, there should be sufficient vector

statements to ensure that the clock signal continues until all waveform domains are

completed. For example, the generic waveform domain has 6 vectors with each vector

having a 10ns period and the pattern duration will be 60ns. For the async_clocks

domain, the timeplate period is 7.5ns and thus 8 vectors will be required for the clock to

run for 60ns. In this case, the async_clocks waveform becomes:

waveform async_clocks (freerunningclock aclk1_domain)

 signal

 aclk : input;

 end

 timeplate tp_aclk period 7.5ns:

 aclk := input[0ps:D, 4ns:U];

 end

 pattern pat_aclk (aclk)

 repeat 8 vector(+, aclk) := [-];

 end

end

NOTE: The freerunningclock reserved word is optional in this case.

End Example

Waveform Generation Language

TSSI © 1979-2026

8

 Details of a Typical Single WGL Waveform Block

Valid syntax for the WaveformBlocks is any of sixteen program sections. These sections

are referred to as WGL programming blocks or blocks. The block names are:

EquationDefaults
EquationSheet
Formats
GlobalMode
Patterns
Pin Groups
Registers
ScanCells

ScanChain

ScanState

Signals
Subroutines
Symbolics
TimeGens
TimePlates
TimingSets

The block names act as block identifiers that categorize the information in each of the

program blocks used. The blocks are optional and can occur in any order, subject to the

restriction that all items in a block must be defined before they are used, and a pattern

block must be defined before a subroutine that uses it is defined. It is possible to create an

empty WDB, a WDB with only signals defined, a WDB with signals and timing defined,

a WDB with only signals and patterns defined, or a WDB with all components defined (as

represented by inclusion of all program blocks describing WDB objects).

A high-level BNF syntactical representation of the WGL program follows:

WaveformPrograms ::= { WaveformProgram }

WaveformProgram ::= “waveform” <waveFormName> [WaveformParameters]

{ WaveformBlocks } “end”

WaveformParameters ::= “(“ [“freerunningclock”] <domainName>”)”

WaveformBlocks ::= (EquationSheet | EquationDefaults | GlobalMode | Formats

|TimeGens | PinGroups | Signals |

TimingSets | Registers | TimePlates | Symbolics | Patterns |

Subroutines | ScanCells | ScanChain | ScanState)

EquationSheet ::= “equationsheet” <equationSheetName>

{ ExpessionDecl } “end”

EquationDefaults ::= “equationdefaults” DefaultsDecl “end”

GlobalMode ::= “pmode” “[” PmodeOption “]” “;”

Formats ::= “format” { FormatDecl } “end”

Waveform Generation Language

TSSI © 1979-2026

9

TimeGens ::= “timegen” { TgDecl } “end”

PinGroups := “pingroup” { PinGroupDecl } “end”

Signals ::= “signal” { SignalDecl } “end”

TimingSets ::= “timeset” <tsNumber> { TgAssign } end”

Registers ::= “register” “(” PinList “)” { RegisterDecl } “end”

TimePlates ::= “timeplate” <timeplateName> TimePlate “end”

Symbolics ::= “symbolic” SignalReference [SymDirection] Radix

SymbolicAssignment “end”

Patterns ::= “pattern” <patternName> “(” PatternParameters “)”

PatternRows “end”

Subroutines ::= “subroutine” <subroutineName> “()”

PatternRows “end”

ScanCells ::= “scanCell” { ScanCellDecl } “end”

ScanChain ::= “scanChain” { ChainDecl } “end”

ScanState ::= “scanState” { ScanStateDecl } “end”

An example of a typical WGL program is:

waveform generic

signal

CS_ENABLE : input dutpin[P1:1]

atepin[CSENAB:1];

A-BUS [15..0] : input radix

hexadecimal

dutpin[P2:2, P3:3, P4:4, P5:5, P6:6, P7:7,

P8:8, P9:9, P10:10, P11:11,

P12:12, P13:13, P14:14, P15:15, P16:16,

P17:17]

atepin[ABUS15:2, ABUS14:3, ABUS13:4, ABUS12:5, ABUS11:6,

ABUS10:7, ABUS9:8, ABUS8:9, ABUS7:10,

ABUS6:11, ABUS5:12, ABUS4:13, ABUS3:14, ABUS2:15,

ABUS1:16, ABUS0:17];

LOAD : input dutpin[P18:18]

atepin[LOAD:18];

. . .

 end

Start Example

Waveform Generation Language

TSSI © 1979-2026

10

timeplate Fetch period 300nS

CS_ENABLE := input[0pS:P, 30nS:S];

A-BUS := input[0pS:D, 120nS:S, 260nS:D];

LOAD := input[0pS:P, 100nS:S];

ENP := input[0pS:P, 50nS:S];

DR := input[0pS:P, 100nS:S];

RO := input[0pS:U, 70nS:S, 180nS:U];

D-BUS := output[0pS:X, 100nS:Q, 250nS:X];

DB-BUS := output[0pS:X, 100nS:Q, 250nS:X];

AD-BUS := input[0pS:P, 100nS:S]; end

timeplate R_W period 200nS

CS_ENABLE := input[0pS:P, 30nS:S];

A-BUS := input[0pS:D, 60nS:S, 190nS:D];

LOAD := input[0pS:S];

ENP := input[0pS:S];

DR := input[0pS:S];

RO := input[0pS:U, 40nS:S, 180nS:U];

D-BUS := output[0pS:X, 60nS:Q, 190nS:X];

DB-BUS := output[0pS:X, 40nS:Q, 180nS:X];

AD-BUS := input[0pS:P, 60nS:S]; end

. . .

symbolic DB-BUS input radix hexadecimal

RESET := [1ED8];

JMP := [BE43];

LDA := [062D];

end

symbolic DB-BUS output radix binary end

pattern group_ALL (CS_ENABLE,A-BUS,LOAD,ENP,DR,RO,D-BUS,DB-BUS:I,DB-BUS:O,

AD-B S:I,AD-BUS:O)

repeat 5

vector(0, 0pS, Startup) := [1 FFFF 0 0 0 1 3D66 RESET ---------------- AD --];

{ This is the COMMENT for the first row }

vector(5, 2.5uS, Fetch) := [1 ADBB 0 0 1 0 3CDA ---- 0011111000000100 BB --];

vector(6, 2.8uS, R_W) := [0 0C13 1 0 1 1 ADBB ---- 0010100100101101 84 --];

vector(7, 3uS, Write) := [0 8D18 0 1 0 0 ADBB JMP ---------------- -- 99];

{ The WRITE cycle contains “mid-cycle I/O” on the DB-Bus.}

 vector(8, 3.4uS, Fetch) := [0 EF57 0 1 0 1 ADBB ---- 1100001001000100 98 --];

 vector(9, 3.7uS, R_W) := [0 82DD 1 0 1 0 EF57 ---- 0110000001110101 7B --];

call sub1();

 vector(16, 5.7uS, Write) := [0 8D18 0 1 0 0 ADBB JMP ---------------- -- 99];

 vector(17, 6.1uS, Fetch) := [0 EF57 0 1 0 1 ADBB ---- 1100001001000100 98 --];

 vector(18, 6.4uS, R_W) := [0 82DD 1 0 1 0 EF57 ---- 0110000001110101 7B --];

 vector(19, 6.6uS, Write) := [0 2927 1 1 0 0 AA03 LDA ---------------- -- 81];

 vector(20, 7uS, Fetch) := [0 84F5 0 1 1 1 AA03 ---- 0100000110110111 A4 --];

 vector(21, 7.3uS, R_W) := [1 8DB4 1 0 1 1 84F5 ---- 1100001100010001 97 --];

call sub1();

Waveform Generation Language

TSSI © 1979-2026

11

 vector(28, 9.3uS, Write) := [0 7306 1 1 0 0 84F5 00DF ---------------- -- 17];

. . .

vector(107, 33.1uS, Fetch) := [0 9DF1 1 1 0 1 140F ---- 0010100101000010 98 --];

{ This is the LAST vector row}

 end

subroutine sub1()

 vector(0, 0pS, Write) := [1 59E7 1 0 1 1 EF57 5FC9 ---------------- -- 65];

 vector(1, 400nS, Fetch) := [0 E327 0 0 0 0 EF57 ---- 0111100101000100 BF --];

vector(2, 700nS, R_W) := [0 28E7 1 0 1 1 E327 ---- 1101001110000110 CA --];

vector(3, 900nS, Write) := [1 898B 1 1 0 1 E327 5F8B ---------------- -- A0];

vector(4, 1.3uS, Fetch) := [1 AA03 0 0 0 1 E327 ---- 1001111010101101 83 --];

vector(5, 1.6uS, R_W) := [0 1ECD 1 0 1 0 AA03 ---- 0010001101010101 23 --];

end

end

 End Example

Waveform Generation Language

TSSI © 1979-2026

12

Program Block Syntax
All WGL program blocks begin with one of the WGL reserved word block names, and

terminate with the reserved word ‘end’. Between these two delimiting reserved words are

one or more WGL statements used to define data. These WGL statements themselves are

subdivided into smaller structures that address more specific operations, such as setting

timing for individual signal channels.

A colon (:) is used to assign an attribute (such as force or input) to an identifier A colon-

and-equivalence (:=) is used as an assignment operator, assigning a value (such as a

numeric value) to an identifier. See the previous example of a typical WGL program for

these usages.

In permitted instances commas and semi-colons are used as delimiters. When several

parameters occupy the same line, each entry may be delimited by a comma (,). Each

separate WGL statement must be delimited by a semicolon (;). Check the BNF notation

for each WGL block for details of permissible usages.

Generally speaking, the WGL blocks are of three types: generic, tester-specific, and

equation-specific.

The generic blocks let you address data that are related to the test waveforms.

The tester-specific blocks allow you to specify data values (such as in TDS WDB) that are

directly related to the type of tester you are targeting.

The equation-specific blocks let you assign expressions and constant values to variables

that can later be used in place of time values in timing sets and TimePlates. The results of

these equations are then included in the test program you can generate using a TDS

WaveBridge or TesterBridge module.

While it is useful to consider the WGL blocks in these three general categories, it is

important to remember that some blocks contain generic, tester-specific, and equation-

specific components. For example, Signals blocks and TimePlates blocks contain both

generic and tester-specific WGL statements. TimePlate blocks and TimingSet blocks

contain generic, tester-specific, and equation-specific WGL statements.

Waveform Generation Language

TSSI © 1979-2026

13

Table 1 defines the block type of each of the sixteen WGL program blocks.

Table 1. WGL program block types

WGL Program Block Type

EquationDefaults equation-specific

EquationSheet equation-specific

Formats tester-specific

GlobalMode generic

Patterns generic

Pin Groups tester-specific

Registers tester-specific

Scan Cells generic

Scan Chain generic

Scan State generic

Signals generic, tester-specific

Subroutines generic

Symbolics generic

TimeGens tester-specific

TimePlates generic, tester-specific, equation-specific

TimingSets tester-specific, equation-specific

Generic Program Blocks
This section discusses the specific syntax for each of the generic program blocks. The

following list shows the WGL generic program blocks:

Signals
Scan Cells
Scan State
Scan Chain

TimePlates
Patterns
Subroutines
Symbolics

Waveform Generation Language

TSSI © 1979-2026

14

Use the generic program blocks to define objects (such as in TDS WDB) that are not

specific to any tester. The generic program blocks are presented in the likely order of use

when creating a tester neutral output (such as in WDB).

Signals

The Signals block is used to declare four types of signal definitions: single-bit signals,

multi-bit buses, groups, and multiplexed signals or buses. Groups may include signals,

buses, or other groups.

The syntax of the WGL Signals block is:

signal

SignalDecl

end

A complete BNF syntactical representation of the Signals block follows:

Signals ::= “signal” { SignalDecl } “end”

SignalDecl ::= <signalName> [BusOrGroup] [“:” SignalAttributes] [Pstate] “;”

BusOrGroup ::= (BusRange | GroupMembers | MuxMembers)

BusRange ::= “[” <bitNumber> “..” <bitNumber> “]”

GroupMembers ::= “[” [SignalReference { “,” SignalReference }] “]”

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

MuxMembers ::= [MuxPartList] [Range]

MuxPartList ::= “[” <muxPartName> “,” <muxPartName> [{ “,”

<muxPartName> }] “]”

SignalAttributes ::= ([“mux”] [Direction] [FreeRunningClock]) { Strobe } [Radix]

[DutPins] [AtePins]

Direction ::= (“input” | “output” | “bidir”) [(“reference” | “timing”)]

Waveform Generation Language

TSSI © 1979-2026

15

FreeRunningClock ::= [“freerunningclock”] “period” (Time | <variableName>)

“leadingedge” (Time | <variableName>) “trailingedge” (Time |

<variableName>) “offstate” (“0”|”1”|”D”|”U”)

Strobe ::= (“in” | “out”) “when” “[” <validityClause> “]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex” | “hexadecimal” | “symbolic”)

DutPins ::= “dutpin” “[” DutPinGroup { “,” DutPinGroup } “]”

DutPinGroup ::= (PinInfo | “(” PinInfo { “,” PinInfo } “)”)

PinInfo ::= PinName| PinNumber

PinName ::= <pinName> [PinNumber]

PinNumber ::= “:” <pinNumber>

AtePins ::= “atepin” “[” AtePinGroup { “,” AtePinGroup } “]”

AtePinGroup ::= (AtePinInfo | “(” AtePinInfo { “,” AtePinInfo } “)”)

AtePinInfo ::= PinInfo [“tg” “[” <timeGenName> { “,” <timeGenName> } “]”]

Pstate ::= “initialp” “[” <TDSstate> “]”

The SignalDecl begins with a user-defined identifier or string. TheSignalDecl can be any

of four types:

▪ single-bit signals n multi-bit buses

▪ groups of signals, buses, or other groups

▪ multiplexed signals or buses

Single-Bit Signals

Single-bit signals are defined by an identifier followed by a list of attributes. The

following is an example of a WGL Signals block with only single-bit signals defined.

signal
 clk : input;

dataReady: output;

in_1 : input;

readWrite: bidir;

Start Example

Waveform Generation Language

TSSI © 1979-2026

16

end

Buses

Buses are defined by an identifier followed by the range of the bus, enclosed in brackets

([]). The total, combined number of single-bit signals and buses that can be defined is

limited to 16384.

The following is an example of a WGL Signals block with single-bit signals and buses

defined.

signal

 clk : input; # system clock
dataReady: output;

in_1 : input;

readWrite: bidir;
data [0..31]: bidir; # 32-bit data bus

addr [0..15]: input; # 16-bit address bus
end

Groups

Groups are defined by a list of previously defined single-bit signals, buses, bus members,

or other groups. Groups can name single-bit signals, buses, bus members, or groups only

once in the list. The number of groups used does not contribute to the combined total of

16384.

The following is an example of a WGL Signals block with single-bit signals, buses, and

groups defined:

signal

 clk : input; # system clock
dataReady: output;

in_1 : input;

readWrite: bidir;
data [0..31]: bidir; # 32-bit data bus

addr [0..15]: input; # 16-bit address bus

busses [data, addr]; # both busses

together data0_8 [data[0..8]];

End Example

Start Example

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

17

oddAddr [addr[1], addr[3], addr[5], addr[7]];

inputs [clk, in];
end

There are predefined groups available that you can use in any correct syntax for groups.

The predefined group names must be entered as upper-case characters, as shown. They

are:

ALL

This predefined group contains all signals, buses, and multiplexed signals and buses

(but not multiplexed parts). Groups are not included.

ALLINPUT

This predefined group contains all signals, buses, and multiplexed signals and buses

(but not multiplexed parts) with the input signal direction attribute.

 ALLOUTPUT

This predefined group contains all signals, buses, and multiplexed signals and buses

(but not multiplexed parts) with the output signal direction attribute.

ALLBIDIR

This predefined group contains all signals, buses, and multiplexed signals and buses

(but not multiplexed parts) with the bidir (bidirectional) signal direction attribute.

ALLMUX

This predefined group contains all multiplexed signals and multiplexed buses (but not

multiplexed parts) with the mux (multiplexed) signal attribute.

There is no limit to the number of groups that can be defined.

Multiplexed Signals or Buses

Multiplexed signals are defined by an identifier followed by a list of multiplexed parts,

enclosed in brackets ([]); multiplexed buses are defined by an identifier followed by a

list of multiplexed parts, enclosed in brackets ([]), and followed by the Range, which is

also enclosed within brackets ([]).

End Example

Waveform Generation Language

TSSI © 1979-2026

18

Do not confuse multiplexed parts (<muxPartName>s) with signals; multiplexed parts

describe the ATE resources used to supply pattern data to a multiplexed signal or bus.

Multiplexed parts function in much the same manner as signals in the TimePlates,

carrying timing parameters and pattern data that is eventually associated with a

multiplexed signal defined in the Signals block.

An example of a WGL Signals block with definitions of a multiplexed signal, a single-bit

signal, and a multiplexed bus follows. Note the use of the mux attribute:

Signal

 fastClock [edge1, edge2]:mux input; # Multiplexed parts edge1,
edge2 on multiplexed
signal fastClock

 rd/_wr :output;
 Databus [bus1, bus2] [0..31]:mux bidir; # Multiplexed parts bus1,

bus2 on multiplexed
bus Databus

end

When waveforms are more complicated than those supported by the target tester’s

formatting set, multiplexed signals and buses are typically used to generate test programs

that contain pin multiplexing for these complicated waveforms. By using this ability, you

can multiply the effective frequency of the tester. If multiple pattern bits are needed to

define a waveform (for example, multiple pulses in a single tester cycle), you should

define such signals or buses as multiplexed signals or buses.

Following the optional BusOrGroup syntax are other attributes that are associated with the

current signal declaration. If you are defining a group, only the radix attribute is

applicable.

atepin

ATE pin information is defined in the Signals block using the reserved word atepin.

The AtePinInfo syntax is used to describe the mapping of the current signal declaration

to tester pins and the binding between a tester pin and its timing generators. The atepin

value is an alphanumeric string. When multiple ATE pins are specified for a multi-bit

bus, the mapping is one-to-one unless parentheses are used to group two or more pin

declarations with a single signal.

ATE timing generator information is also defined in the signals block. The timing

generator binding is introduced with the reserved word tg. The tgName is the name of

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

19

the tester-specific timing generator that is generating the timing for all the edges of the

signals in the current signal declaration. Multiple tgNames indicate that the timing

generators are being multiplexed or the existing timing generators (defined in a

TimeGens block) are responsible for multiple edges.

NOTE
Pin information and timing generator information are both tester-specific

The following is an example of a WGL Signals block with dutpin and atepin attributes

defined:

Signal

 clk : input dutpin [c:p1] atepin [fclock:123 tg [ACLK1]];

dr : input dutpin [r:p2] atepin [p124:124 tg [BCLK1,
CCLK1]];

data: output dutpin [d:p3] atepin [p2:2 tg [STRB1]];
end

direction

The direction attribute describes the direction of a signal and controls how the signal

is used in test program generation.

A signal may be forcing (input), sensing (output), or both forcing and sensing at

different times (bidir); the default is input. A direction may not be specified for groups.

If a bus has a direction of input or output, all the bits of the bus must have the same

direction; otherwise, only bidir is legal.

To control how the signal is used in test program generation, you can choose either

reference or timing. If neither of these is specified, the signal is considered in

TimePlate matching and tester program generation. If the clause is used with timing

specified, the signal is considered in TimePlate binding but not in test program

generation. If reference is specified, the signal is not considered in either TimePlate

binding or test program generation. When this clause is used, complete WGL syntax

is still required for the signal (signal, TimePlate track, and data).

The following is an example of a WGL Signals block with signals I1 and I3 use

restricted:

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

20

signal
I1 : input reference;
I2 : input;
I3 : input timing;
. . .

end

freerunningclock

The ‘freerunningclock’ attribute assigns its signal to be a free-running clock with

direction being forcing (input), also known as a background clock.

Free-running clocks should be independent from the rest of the signals. They are

naturally supported by the testers that have the hardware equivalence which allows

free-running clocks to be at any frequency, whether or not in sync with the rest of the

signals on the device.

Conversion tools should program these free-running clocks in separate time domain(s)

when applicable.

For target testers without multi-time domains or free-running clock support,

conversion tools must “condition” them to be able to function in the same time

domain as the rest of the signals via alignment or other conditioning techniques.

The keyword “freerunningclock” is case insensitive, and it’s also optional. When a

keyword “Period” is seen in the signal attribute along with “LeadingEdge”,

“TrailingEdge”, and “OffState”, WGL syntax allows that to be sufficient to define a

free-running clock.

The following is an example of two free-running clocks defined in a WGL Signals block,

frc8 and frc15:

signal
 frc8: FreeRunningClock Period 8ns LeadingEdge 2ns TrailingEdge 4ns OffState 0;
 frc15: Period 15ns LeadingEdge 0ns TrailingEdge 7.5ns OffState U;
end

The corresponding waveforms for these two example clocks can be expressed in WGL syntax:

Start Example

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

21

For frc8 clock. The intervals from 0ps to 2ns, and 4ns to the end of the

8ns period are off states, so they took on ‘D’ because the specification

was ‘OffState 0’. The ‘OnState’ from 2ns to 4ns is implied ‘U’.

timeplate frc8 period 8nS

 Frc8 := input[0pS:D, 2nS:U, 4nS:D];

end

For frc15 clock. The intervals from 7.5ns to the end of the 15ns period

is off state, so it took on the state ‘U’ because the specification was

‘OffState U’. The ‘OnState’ from 0ns to 7.5ns is implied ‘D’.

timeplate frc15 period 15nS

 Frc15 := input[0pS:D, 7.5nS:U];

End

Strobe Clause

Signals and buses may have optional strobe clauses following the direction attribute.

Use this clause to specify:

• that an input or output signal is valid only when another signal takes a certain

value, or

• the conditions under which a bidirectional signal is an input, and those under which

it is an output.

Strobe clauses take the form: in|out when [<validityClause>]

The <validityClause> takes the form: <signalName> < TDSstate>

The following is an example of a WGL Signals block with strobe clause for signals dr

and data:

signal
 cntrl : input;

dr : bidir in when [cntrl D] out when [cntrl U];

data[7..0] : output out when [cntrl D];
end

dutpin

The dutpin attribute specifies the names (and optional numbers) of the pins on the

device-under-test associated with the signal. The dutpin value is an alphanumeric string.

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

22

If a device has multiple pins dedicated to the same signal, or different pins in use when

a bidirectional signal is input or output, more than one pin may be specified. dutpin may

not be specified for groups.

If multiple pins are specified in a multi-bit bus declaration, the mapping is assumed to

be one-to-one between the bus elements and the pins, in a left-to-right, most-

significant-pin to least-significant-pin order. Other distributions of pins to signals

(such as that required for multiplexed pins) can be accomplished by grouping the pin

declarations within parentheses.

This indicates that multiple pins are bound to single-bit bus member.

The following is an example of a WGL Signals block with dutpin attribute defined:

signal

 clk : input dutpin [c:1];

 data[0..7]: bidir dutpin [

(d0i, d0o), (d1i, d1o), (d2i, d2o),

(d3i, d3o), (d4i, d4o), (d5i, d5o),

(d6i, d6o), (d7i, d70)];
end

mux

The mux attribute defines a signal or bus as a multiplexed signal or bus. The signal or

bus receives pattern data from a list of multiplexed parts. If the multiplexed parts are

themselves buses, these buses must be followed by the range of the bus enclosed in

brackets ([]).

The names of the multiplexed parts must be identified for the first time in the current

signal definition; it is illegal to use the names of other signals, groups, or buses that

have been previously defined in the Signals block of the WGL file.

initialp

Each signal definition may have an optional initialp state specified. P states are

resolved to this state the first cycle of the waveform. Any legal TDS state may be

specified. If the initialp clause is omitted, the default is D (FORCE_LO). initialp may

not be specified for groups.

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

23

The following is an example of a WGL Signals block with initialp specified for signals

clk and bus:

signal
 clk : input initialp[U];

bus[0..7] : output initialp[X];
end

Radix

The radix attribute describes the base in which the pattern data for the bus is described

in the Patterns block. The radix attribute can be binary, hexadecimal, octal,

decimal, or symbolic. Only binary and symbolic are legal for single-bit signals.

The default radix is binary when the radix attribute is unspecified.

symbolic radix indicates that identifiers defined in subsequent symbolic blocks may

be used in pattern vectors. Decimal radix may only be specified for buses and groups

with 32 or fewer scalar member signals.

Scan Cells

The Scan Cells block is used to represent internal storage registers of a device that may

be loaded or observed using serial shift scan circuitry. The total number of scan cells

allowed in a single WGL In file is limited to 32767.

It is important to distinguish scan cells from signals. Scan cells do not have direction and

there is no direct association with ATE or DUT pins. Scan cells cannot be referenced in

TimePlates or pattern parameter lists.

The syntax of the WGL Scan Cells block is:

scancell

ScanCellDecl

end

A complete BNF syntactical representation of the Scan Cells block follows:

ScanCells ::= “scanCell” { ScanCellDecl } “end”

ScanCellDecl ::= <cellName> [ScanGroup] [“:” Radix] “;”

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

24

ScanGroup ::= “[” [ScanRange | ScanGroupMembers] “]”

ScanRange ::= <bitNumber> “..” <bitNumber>

ScanGroupMembers ::= CellReference { “,” CellReference }

CellReference ::= (<cellName> [Range])

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex” | “hexadecimal” | “symbolic”)

The ScanGroup statement allows you to specify a logical grouping of scan cells. The scan

cells in a group may be from multiple scan chains. Each ScanGroupMember must be

previously defined, unless it is the name of another scan group.

The optional Radix specification for scan groups and registers is used in scan state vectors.

The supported radices are implemented by using the WGL reserved words: binary, hex,

octal, decimal, and symbolic.

An example of a ScanCells block is:

scancell

latchA;

latchB;
datareg[0..7]: radix hexadecimal;
group_1[latchA, latchB, datareg[7]]: radix octal;

end

The Scan Cells block example names scan-able cells within the device. Cells may be

single-bit latches, such as latchA, or multi-bit registers, such as datareg. Logical

groups of scan cells, such as group_1, also may be specified.

A complete example of WGL scan structures is provided on later on in this document.

Scan State

Each state declaration in a Scan State block defines the entire state of the set of all scan

cells at some instant in time. The goal of input scanning is to achieve that state; the goal

of output scanning is to observe that state. A scan state vector may be referenced from

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

25

zero or more scan pattern rows. It may take multiple scan chains to load or observe all the

cells in a state.

A binary format of the scan vectors is supported (See “Binary WGL”). This capability

allows you to use binary data from a CAE simulation as input to TDS.

The syntax of the WGL Scan State block is:

scanstate

ScanStateDecl

end

A complete BNF syntactical representation of the Scan State block follows:

ScanState ::= “scanState” { ScanStateDecl } “end”

ScanStateDecl ::= <stateName> “:=” { StateVectorElement } “;”

StateVectorElement ::= <chainName> “(“ { <stateString> } “)”

The ScanStateDecl specifies a name for the scan state and the values of all the scan cells

for that state. The <stateName> is an identifier; some special characters may be used if the

<stateName> is enclosed within double quotation marks (“ ”). <stateNames> occupy

their own name space but must be unique among all other states. The StateVectorElements

are assigned by naming the cell, register, cell group, or chain and appending a <stateString>

value in parentheses. The <stateString> is interpreted in the radix of the associated cell

reference similar to the technique used for pattern states. The WGL Out Converter always

generates state vectors using ALLSCAN as the only cell reference. The <chainName> is

an identifier and must be unique among all other scan chain names.

The value of any cell not specified in the scan state declaration is implicitly X, the TDS

state character representing a compare unknown state. The actual value used by a tester to

drive X is technology-dependent and programmed in TDS Test Control Language (TCL).

If that portion of the state is scanned out, the comparison is masked. For more information

on how to use TCL, see the “Test Control Language” document.

Legal characters in the stateString are 0, 1, Z, and X for binary radix, 0-9, A-F, Z, and X

for hexadecimal radix, 0-7, Z, and X for octal radix, and 0-9 for decimal radix.

The following is an example of a Scan State block. The bit order of the scan group

ALLSCAN is the order that the scan cells (and scan registers) are defined in the Scan Cell

block of the WGL file.

 Start Example

Waveform Generation Language

TSSI © 1979-2026

26

scanState

 state1 := latchA(1) latchB(0)

datareg(3F); state2 := latchA(0)

latchB(1) datareg(01); state3 :=

ALLSCAN(XX00000000); stateX := ;
end

The stateX state declaration in this example sets up a state of all X (compare unknown)

values.

A complete example of WGL scan structures is provided later in this document.

Scan Chain

The Scan Chain block defines the configuration of a circuit path connecting edge signals

to scan cells and inverters. Each chain is named with an identifier or quoted string that

must be unique among signals, scan cells, buses, scan registers, groups, and other scan

chains.

The syntax of the WGL Scan Chain block is:

scanchain

ChainDecl

end

A complete BNF syntactical representation of the Scan Chain block follows:

ScanChain ::= “scanChain” { ChainDecl } “end”

ChainDecl ::= <chainName> “[” ChainMembers “]” [“:” Radix] “;”

ChainMembers ::= (OutEdgeSignalOnly | ChainMemList)

OutEdgeSignalOnly ::= “, ” ChainMemReference

ChainMemList ::= ChainMemReference { “ , ” ChainMemReference }

ChainMemReference ::= (CellReference | “!”)

CellReference ::= (<cellName> [Range])

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex” | “hexadecimal” | “symbolic”)

End Example

Waveform Generation Language

TSSI © 1979-2026

27

The <chainName> is an identifier and must be unique among all other scan chain names.

The ChainMembers list represents the ordered sequence of scan chain elements where the

implied shift direction is left-to-right. When signal names appear in a ChainMembers list,

the signal names must be the first or last entry in the list.

A signal name appearing at the start of the chain must have been declared input or

bidirectional. A signal appearing at the end must have been output or bidirectional. The

reserved symbol ! indicates state inversion. Scan chains may be members of other chains

as long as the declaration is not recursive.

Either the input edge signal or the output edge signal can be omitted, but if the chain is

directly referenced by a scan pattern row, at least one must be present.

If the Radix is omitted, binary radix is supplied by default.

An example of a Scan Chain block is:

Scanchain

 chain1 [SC1_IN, datareg[0], latchA, datareg[2], SC1_OUT] : radix

octal; chain2 [SC2_IN, datareg[1], !, datareg[7], datareg[5], latchB,

datareg[4], !, datareg[6]];
end

The Scan Chain block example shows the order of scan cells on two physical chains. The

first and last elements of thechain1 cell list are the names of edge signals SC1_IN and

SC1_OUT, which must have been defined previously in a Signals block. chain2 has an

input signal SC2_IN but no corresponding output signal. Therefore, chain2 may be

used to control the state of the listed scan cells but there is no way to observe their state.

The reserved symbol ! appears twice in the chain2 cell list. This indicates that states are

inverted when they shift between datareg[1] and datareg[7], and between

datareg[4] and datareg[6].

Parallel scan chains are supported, but the scan chains can not be identical.

The following is an example of the legal use of parallel scan chains.

waveform t1

scancell

Start Example

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

28

latch1; latch2; latch3; latch4; latch5; latch6; latch7; latch8;

end

scanstate
state1 := latch1(0) latch2(0) latch3(0) latch4(0);

state2 := latch1(0) latch2(0) latch3(0) latch4(1);

state3 := latch1(0) latch2(0) latch3(1) latch4(1);

state4 := latch1(0) latch2(1) latch3(0) latch4(0);

state5 := latch1(0) latch2(1) latch3(0) latch4(1);

estate1 := latch5(1) latch6(1) latch7(1) latch8(0);

estate2 := latch5(1) latch6(1) latch7(0) latch8(1);

estate3 := latch5(1) latch6(1) latch7(0) latch8(0);

estate4 := latch5(1) latch6(0) latch7(1) latch8(1);

estate5 := latch5(1) latch6(0) latch7(1) latch8(0);

estateX := ;

end

signal
clock : input;

scanIO : bidir;

scanOut :

output; enable :

input;

end

scanChain
chain1 [scanIO, latch1, latch2, latch3, latch4];

chain3 [latch1, latch2, latch3, latch4, scanIO];

chain2 [latch5, latch6, latch7, latch8, scanOut];

end

timeplate scanTiming period 200ns
clock := input [0ps:D, 50ns:S, 100ns:D];

enable := input [0ps:S];

scanIO := input [0ps:S];

scanIO := output [0ps:X, 50ns:Q];

scanOut := output [0ps:X, 50ns:Q,

90ns:X]; end
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)

vector(+, scanTiming):=[1 1 1 - X];

scan(+,scanTiming):=[1 1 - - -], input[chain1:state1],
output[chain3:estate1];

vector(+, scanTiming):=[1 1 1 - X];

scan(+,scanTiming):=[1 1 - - -], input[chain1:state2],

 output[chain2:estate2];

vector(+, scanTiming):=[1 1 1 - X];
 scan(+,scanTiming):=[1 1 - - -], input[chain1:state3],

Waveform Generation Language

TSSI © 1979-2026

29

 output[chain2:estate3];

 vector(+, scanTiming):=[1 1 1 - X];
 scan(+,scanTiming):=[1 1 - - -], input[chain1:state4],

 output[chain2:estate4];

 vector(+, scanTiming):=[1 1 1 - X];
 scan(+,scanTiming):=[1 1 - - -], input[chain1:state5],

 output[chain2:estate5];

end

end

A complete example of WGL scan structures is provided later in this document.

TimePlates

The TimePlates block is used to define the timing component of the waveforms. The

TimePlates convey the unique kinds of timing that are present in the overall waveforms.

The syntax of the WGL TimePlate block is:

timeplate <timeplateName> TimePlate end

A complete BNF syntactical representation of the TimePlates block follows:

Timeplates ::= “timeplate” <timeplateName> TimePlate “end”

TimePlate ::= “period” TimeReference [“timeset” <tsNumber>] Channels

TimeReference ::= (Time | <variableName>)

Time ::= <timeValue> Unit

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

Channels ::= { SignalReference { “,” SignalReference } “:=” Track }

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Track ::= [Direction] [“[” FirstEvent { “,” Event } “]”] “;”

Direction ::= (“input” | “output” | “bidir”) [(“reference” | “timing”)]

FirstEvent ::= “0” Unit “:” <TDSstate> [“ ’ ” (“edge” | “window”)]

End Example

Waveform Generation Language

TSSI © 1979-2026

30

Event ::= TimeReference “:” <TDSstate> [“ ’ ” (“edge” | “window”)]

<timeplateName> is an identifier used to reference the TimePlate throughout later

portions of the WGL program. An overall timing period is assigned to each TimePlate by

the reserved word period. The TimePlate declaration is a definition of the constituent

parts of the TimePlate.

<variableName> is the name of a variable that has been previously defined in the ExprSet

sub-block of an EquationSheet block. (See “ExprSet” later in this document.)

Each TimePlate is given an overall time period applying to the length of the cycle

following the reserved word period. The period can be a numeric value greater than zero,

or a variable having been previously defined in the ExprSet sub-block of an EquationSheet

block.

NOTE
A variable used in the TimePlates block must have a value that is meaningful

when expressed in units of time.

A TimePlate contains a list of signal Channels. Each Channel can contain one or more

signals, buses, groups, or multiplexed parts. These entities must have been previously

declared in the Signals block. Each Channel associates the signals with a Track.

Conceptually, a Channel is a container for one or more signal names, each of which is

followed by a Track. The Track itself contains the actual information about the shape and

timing of the waveform, and its Direction. The TDSstates that are used must be consistent

with those available for the direction of input or output. (See Table 7 for a list of TDS

state characters.) All the signals that share the channel must also have a compatible

direction.

NOTE
It is important to note that while multiplexed parts are permitted, multiplexed

signals or buses (those signals or buses tagged with the mux attribute in the

Signals block that receive their timing parameters from multiplexed parts) are

not permitted. In effect, timing is defined for the multiplexed parts, which then

supply data for the multiplexed signal or bus with which they are associated in

the Signals block.

Waveform Generation Language

TSSI © 1979-2026

31

The first event in a Track must have a literal time value of 0. Timing supplied by a variable

is not legal for the first event. Subsequent events can use either a literal time value or a

variable to specify the timing of the event. A variable, if used, must have been previously

defined in the ExprSet sub-block of an EquationSheet block.

The reserved word timeset lets you define a tester-specific timing set name that is

associated with the timing in the TimePlate. The following is an example of a simple

TimePlates block:

timeplate read period 250ns timeset 1

 clock := input [0ps:D, 50ns:U, 100ns:D, 150ns:U, 200ns:D,
250ns:U];

in := input [0ps:D,170ns:U];

out := output [0ps:X,180ns:Q’edge, 220ns:X];
end

A bidirectional signal can occupy one channel if the direction is specified using the

reserved word bidir, or two channels if the direction is defined using both of the reserved

words input and output. In the first instance, the channel is doing intra-cycle input/output

switching; in the second instance, the channel is doing inter-cycle input/output switching.

These two can be combined to make a maximum of three channels per signal.

Contained within each Track is a comma-separated list of events. Each event consists of

a time value defined byTime and a TDSstate. For input channels, the TDS force logic

state characters must be used; for output channels, TDS expect logic state characters must

be used; for bidirectional channels, both force and expect TDS state characters may be

used. The TDS state character S indicates that the actual state character is to be

“substituted” into the waveform at that point. The actual state character comes from the

data bit in the corresponding column in a pattern block. In other words, when Track

contains an S state character, the actual state is derived from the pattern data. The TDS

state character P indicates that the state is to be provided from the previous state (from

the previously juxtaposed template). The TDS state character C indicates that the state is

the complement of the substituted state. See Table 7 for a list of TDS logic state

characters.

For output channels, the compare logic states must be used. The TDS state character Q

indicates that the state is to be substituted from the data bit from the corresponding

column in a pattern block. The TDS state character R indicates that the state is the

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

32

complement of the substituted state. The optional reserved words edge or window (default)

can follow an output state to indicate edge or window strobing to be produced in the target

tester strobe format.

An example of a typical TimePlates block, including the corresponding signal definitions

in the Signals block and the pattern data defined in the Patterns block, follows. (Note the

use of multiplexed buses.)

signal
#===

FastClock is generated using eight multiplexed components.
Databus bus is made up of two separate busses, bus1 and bus2.
#===

FastClock[edge0, edge1, edge2, edge3, edge4, edge5, edge6, edge7]: mux input;

rd/_wr : output;
Databus[bus1, bus2][0..3] : mux bidir; # Multiplexed the two four bit

busses to get a byte-wide bus.
end

timeplate writeTP period 80ns
edge0: input[0ps:D, 2ns:U, 8ns:D, 10ns:?]; # Clock for data bit bus1[0]

edge1: input[0ps:?, 10ns:D, 12ns:U, 18ns:D, 20ns:?]; # Clock for data bit bus1[1]

edge2: input[0ps:?, 20ns:D, 22ns:U, 28ns:D, 30ns:?]; # Clock for data bit bus1[2]

edge3: input[0ps:?, 30ns:D, 32ns:U, 38ns:D, 40ns:?]; # Clock for data bit bus1[3]

edge4: input[0ps:?, 40ns:D, 42ns:U, 48ns:D, 50ns:?]; # Clock for data bit bus2[0]

edge5: input[0ps:?, 50ns:D, 52ns:U, 58ns:D, 60ns:?]; # Clock for data bit bus2[1]

edge6: input[0ps:?, 60ns:D, 62ns:U, 68ns:D, 70ns:?]; # Clock for data bit bus2[2]

edge7: input[0ps:?, 70ns:D, 72ns:U, 78ns:D, 80ns:?]; # Clock for data bit bus2[3]

rd/_wr: input[0ps:?, 20ns:D, 80ns:?]; # Indicate write cycle

bus1[0]: input[0ps:D, 5ns:S, 10ns:?]; # Data bit 0

bus1[1]: input[0ps:?, 10ns:D, 15ns:S, 20ns:?];# Data bit 1

bus1[2]: input[0ps:?, 20ns:D, 25ns:S, 30ns:?];# Data bit 2

bus1[3]: input[0ps:?, 30ns:D, 35ns:S, 40ns:?];# Data bit 3

bus2[0]: input[0ps:?, 40ns:D, 45ns:S, 50ns:?]; # Data bit 4

bus2[1]: input[0ps:?, 50ns:D, 55ns:S, 60ns:?]; # Data bit 5

bus2[2]: input[0ps:?, 60ns:D, 65ns:S, 70ns:?]; # Data bit 6

bus2[3]: input[0ps:?, 70ns:D, 75ns:S, 80ns:?]; # Data bit 7

end

pattern load1(FastClock, rd/_wr, Databus)
 vector(+, writeTP) := (11111111 1 10101010XXXXXXXX);

end

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

33

You can see in the example that the multiplexed parts do not need be defined as contiguous

sections of the timing track; gaps in the defined timing for the multiplexed parts are

allowed to support the requirements of your particular tester.

The multiplexed parts can occur in any order in the TimePlate block, as can the timing

defined in the timing track. For example, the timing for edge7 and edge2 could legally

be defined as:

edge2: input[0ps:?, 70ns:D, 72ns:U, 78ns:D, 80ns:?];

. . .

edge7: input[0ps:?, 20ns:D, 22ns:U, 28ns:D, 30ns:?];

As you can see, the timing values are in the reverse order of those shown in the example.

The pattern data (11111111 1 10101010XXXXXXXX) is mapped to the buses and

signals as described in “Patterns” later in this document.

An edge strobe is an instruction to the tester comparator hardware to take an instantaneous

sample of the DUT output, and compare it with the expect data. A window strobe tells

the tester comparator hardware to verify that the expect data is appearing at the DUT

throughout a window of time. If neither reserved word is specified, the event is assumed

to be a window strobe.

When defining a track, make sure that you assign increasing time values for each event

subsequently defined, whether using a constant time value or a variable; the first event of

the waveform must always begin at 0pS, and it is unacceptable to define a second event at

20nS and a third event at 15nS. Remember that all event times are relative to the

beginning of the cycle.

TimePlates used with scan pattern rows must satisfy certain requirements. Those signals

that terminate scan chains referenced from the same pattern row must have sample states;

that is, signals that appear at the start of a scan chain must have an S state character, and

signals that appear at the end of a scan chain must have a Q state character in their

respective waveform shapes. Any other state characters will be a violation.

The following is an example of a TimePlates block that can be used with scan pattern rows:

timeplate runSC period 500ns
SC1_IN := input[0pS:S, 250nS:D];
SC2_IN := input[0pS:S, 250nS:D];
SC1_OUT := output[0pS:X, 250nS:Q];

Start Example

Waveform Generation Language

TSSI © 1979-2026

34

SC_CLOCK := input[0pS:U, 250nS:D];
SC_EN := input[0pS:U];
BUS_D := output[0pS:X];
ADDR_IN := input[0pS:P];

end

NOTE
In the above example, only signals containing TDS state characters for

unresolved states (such as S or Q) are scan signals (signals that terminate

scan chains).

You can use variables in the place of literal time values in the TimePlates block. The

variables must be previously defined in a default ExprSet sub-block of an EquationSheet

block. (See “ExprSet” later in this document.)

Variables can be substituted for the TimePlate period value and any event time. You can

intermix literal time values and variables, although the initial event in a time track must

occur at 0pS, and it must be expressed as a literal time value.

The following example shows how variables that were defined in an EquationSheet block

can be used in a TimePlate block. The use of variables is highlighted in bold typeface:

timeplate ts1 period write_cycle

 clk := input[0pS:D, 20nS:U, tclk1:D, 90nS:U];
ale := input[0pS:D, t1:S, t2:D];
RE := input[0pS:D, 20nS:S, 50nS:D];
OE := input[0pS:P, 30nS:S];

strobe := output[0pS:X, t3:Q, 90nS:X];
end

Patterns

The Patterns block is used to define rows of data bits. These rows are also called vectors.

The vectors defined in the Patterns block are to be modulated through the TimePlate that

is associated with each vector. The result of this modulation creates the waveform.

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

35

A binary format of the pattern vectors, to be used in place of ASCII pattern data, is

supported. See “Binary WGL” section later in this document. This capability allows you

to use binary pattern data from a CAE simulation as input to TDS. You cannot mix ASCII

pattern vectors and binary pattern data within a Pattern block. However, you can have an

ASCII Pattern block and a binary Pattern block within a WGL file.

The syntax of the WGL Patterns block is:

pattern <patternName>

PatternParameters PatternRows

end

A complete BNF syntactical representation of the Patterns block follows:

Patterns ::= “pattern” PattName “(” PatternParameters “)”

PatternRows “end”

PattName ::= (<patternName> | <patternNameStr>)

PatternParameters ::= PatternParam { “,” PatternParam }

PatternParam ::= SignalReference [“:” (“I” | “O”)]

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

PatternRows ::= { [<vectorLabel> “:”] (Loop | Repeat | ScanRow) }

Loop ::= “loop” [<loopName>] <loopCount>

PatternRows “end” [<loopName>]

Repeat ::= [“repeat” <repeatCount>] (Vector | Call | Offset)

Vector ::= “vector” Address “:=” PatternExpression [TimeComment] “;”

Address ::= “(” AddressElement { “,” AddressElement } “)”

AddressElement ::= (“+” | <cycleNumber> | [Time] | <timeplateName>) Time ::=

<timeValue> Unit

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

PatternExpression ::= “[” { (<stateString> | <patternIdentifier>) } “]”

Waveform Generation Language

TSSI © 1979-2026

36

TimeComment ::= “(” Time “)”

Call ::= “call” <subroutineName> “()” “;”

Offset ::= “skip” Time “;”

ScanRow ::= “scan” Address “:=” ScanRowElement { “,” ScanRowElement } “;”

ScanRowElement ::= (PatternExpression | ScanRun)

ScanRun ::= ScanDir “[” <chainName> “:” <stateName> “]”

ScanDir ::= (“input” | “output” | “feedback”)

Multiple Pattern blocks are allowed in WGL and are used to describe a way of partitioning

a test program into pattern bursts in the target tester.

<patternName> is a user-defined name such as Group_ALL.

<patternNameStr> is a user-defined name such as “Group+two”. (String notation allows

the use of characters not otherwise permitted.) The <patternName> and <patternNameStr>

user-defined names are stored in the TDS WDB. Third party tools should also store them

or pass them through to the target tester program.

The PatternExpression defined for each identifier must contain legal pattern

<stateString>s. The number of bits in the PatternExpression must be the same as the

number of bits in the corresponding signal, bus, group, or multiplexed signal or bus that is

associated with it.

PatternParameters is a parentheses-enclosed list of signal names that have already been

defined in the Signals block. The PatternParameters are used to map signals, buses,

groups, and multiplexed signals or buses (defined in the Signals block) to columns in the

PatternExpressions. If multiplexing is used for signals or buses, the pattern bits are

combined under the control of the associated radix, in exactly the same manner that the

pattern bits are controlled for non-multiplexed buses. For multiplexed parts, the binding

order of the pattern bits is left-to-right as specified in the multiplexed signal definition in

the Signals block. Each PatternParam in the parameter list corresponds in order of

occurrence to columns of data in each vector statement.

Each column should have a <stateString> bit delimited by a space. For a column with a

multi-bit signal (buses, groups, multiplexed), there should be <stateString> bits without

space delimiters. The number of bits are as specified in the Signals block. For instance, if

a group is specified to have 3 signal members, then the number of <stateString> bits

would be 3, and the <stateString> bits should not have spaces between each two bits (for

Waveform Generation Language

TSSI © 1979-2026

37

instance, 000, 101, 111, etc). This convention aπplies to groups, buses, and multiplexed

signals.

For example, if one of the identifiers in the PatternParameters has a group, clocks, in the

column, the <stateString> bits of clocks should not have spaces between bits to

represent one column, clocks.

signal

 sig1 : input;

 c1 : input;

 c2 : input;

 c3 : input;

 clocks [c1, c2, c3];

timeplate ts1 period 10ns

 sig1 := input[0pS:P, 5nS:S];
clocks := input[0pS:D, 5nS:U];

end

pattern group_ALL (sig1, clocks)

vector(0, ts1) := [0 111];

vector(1, ts1) := [1 000];

vector(2, ts1) := [0 101];

end

PatternRows are definitions of rows of data bits used to supply data to waveforms when

modulated through a TimePlate, as defined in the TimePlate block.

The optional TimeComment provides a mechanism for binding a time to a Vector. It is

stored in the database as a comment only.

A Vector consists of an Address and an associated pattern expression. The simplest form

of an Address is an integer cycle number. A plus sign (+) can be used as an address to

automatically increment the cycle number from the previous row. The starting time of the

cycle may also appear in the address. If a <timeplateName> is mentioned in an Address,

it must reference an existing TimePlate.

The <patternIdentifier> can be used in subroutines, pattern blocks, or scan state vectors as

a shorthand for PatternExpression when the radix of the associated signal, bus, group, or

scan element is set using the reserved word symbolic. See the Symbolics section in this

chapter for more information on how to use the reserved word symbolic.

Waveform Generation Language

TSSI © 1979-2026

38

The following vector declaration uses an integer address (0), starting time of the cycle

(0pS), the TimePlate name with which the vector is associated (t1), and the pattern

data ([1 ZZZZZZZZ]).

 vector(0, 0pS, t1) := [1 ZZZZZZZZ];

The vector declaration below uses only automatic increment address (+) and the pattern

data ([1- 1111111100000000 1 -]).

 vector(+) := [1- 1111111100000000 1 -];

Vectors and subroutine calls may have optional repeat counts. To cause the vector to be

used more than once, the reserved word repeat and a repeat count are used.

The following is an example of a simple WGL Patterns block:

pattern group_ALL (C0,C1,C2,C3,C4,C5,C6,C7,C8)

vector(0, TimeSet0_0) := [0 0 0 1 1 0 1 1 0];

vector(1, TimeSet1_0) := [1 1 1 0 0 1 1 1 1];

vector(2, TimeSet1_1) := [0 1 1 0 1 1 0 1 0];

vector(3, TimeSet2_0) := [1 1 1 1 1 1 0 1 1];

vector(4, TimeSet3_0) := [0 0 0 0 0 0 1 1 1];

vector(5, TimeSet3_1) := [0 0 0 0 1 0 1 0 0];

end

The example below is a WGL Patterns block with a repeat statement that describes a

waveform which has a periodic clock for two cycles and an 8-bit data bus that has a value

of all Hi-Z for the first cycle, and a value of 0001 1010 for the second cycle. The repeat

statement causes third through sixth cycles of the waveform to all have the same value on

the data bus.

signal

 clock : input;

 data[0..31] : input radix binary;

end

timeplate t1 period 200ns

clock := input[0ps:D, 100ns:S, 150ns:D];

Start Example

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

39

data := input[0ps:Z, 120ns:S] radix binary;

end

pattern load1 (clock, data[8..15])

vector(0, 0pS, t1) := [1 ZZZZZZZZ] (100ns);

vector(1, 200nS, t1) := [1 00011010] (300ns);

repeat 4 vector(3, 200nS, t1) := [1 00011010];
end

Bidirectional patternParameters always require twice the number of pattern columns to

account for input and output directions. If a bidirectional single-bit signal is mentioned as

a pattern parameter, two adjacent bits are required (no space between them is allowed). If

a bidirectional signal is mentioned with an :I or :O, this counts as one parameter per

occurrence. A space is required between them if both directions are used. Bidirectional

buses have all of their input pattern bits mentioned first, followed by the output pattern

bits. If an:I or :O is used on a bidirectional bus, this counts as one pattern parameter,

and at least one space is required as a separator.

The number of bits for each pattern parameter must be the same as the width of the signal,

bus, group, or multiplexed signal or bus. The number of bits for a bus is the difference

between its upper and lower bounds, plus one. The number of bits in a group is the sum

of the number of bits of all the group members. The number of bits for a single direction

multiplexed bus is the width of the bus times the number of multiplexed parts. The

number of bits for a bidirectional multiplexed bus is the width of the bus times the number

of the multiplexed parts times two.

The following is an example of a WGL Patterns block with bidirectional bus pattern

spacing:

signal

foo[0..7] : bidir radix binary;

fee[0..7] : bidir radix

hexadecimal; fum[0..7] : bidir

radix hexadecimal; end

pattern load1 (foo,fee,fum:I,fum:O)

vector(+) := [10101010-------- FF-- F- -

-];

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

40

The :I and :O can only be used with bidirectional signals, buses, groups, multiplexed

signals or buses, or parts of multiplexed signals or buses.

If the number of the pattern bits in the vector statement does not equal the sum of the bits

assigned to the buses defined in the Signals block (that is, the bus range, see “Buses”), an

error is reported.

The reserved word call invokes a pattern subroutine, as indicated by the

<subroutineName>. The rows of the subroutine are treated exactly as if they had been

included in-line at the point of the call. Like vectors, calls may have optional repeat counts

specified.

The following is an example of a WGL Patterns block with subroutine call foo:

pattern load1 (clock, data[8..15])

vector(0, 0pS, t1) := [1 ZZZZZZZZ];

call foo();
vector(+, t1) := [1 00011010];

end

subroutine foo() vector(t1) :=

[1 00011111];
end

The reserved word loop allows a sequence of other vectors, calls, and loops to be repeated

a specified number of times. Loops can be nested to any depth. Loops have optional

names that have no significance other than as a commentary tag.

The following is an example of a WGL Patterns block with loop loopName:

pattern load1 (clock, data[8..15])

vector(0, 0pS, t1) := [1 ZZZZZZZZ];

loop loopName 3 call foo();

vector(+, t1) := [1 00011010];

 end loopName end

The reserved word skip provides for the declaration of a time period when the waveform

state is unspecified. Signal states and event timing are suppressed during the skipped

period. The following is an example of a WGL Patterns block with a skip of 400nS:

Start Example

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

41

pattern load1 (clock, data[8..15])

vector(0, 0pS, t1) := [1 ZZZZZZZZ];

vector(+, t1) := [1 00011010];

skip 400nS;
vector(+, 0pS, t1) := [1 ZZZZZZZZ];

vector(+, t1) := [1 00011010];
end

Scan pattern rows may appear in pattern blocks freely intermixed with the other row types. Each row

represents an arbitrary number of cycles dependent on the lengths of the scan chains that it references.

Note that the scan state defines the values of all scan cells in the device. Only those scan cells on the

indicated scan chain(s) are loaded or observed by a particular scan row. Other scan cells not referenced

by a chain in the pattern row are not affected by the row. Multiple combinations of chain, state, and

direction may appear in each scan row. This provides for parallel scan chains or simultaneous loading

and observing of a single chain. It is illegal, however, for a scan row to specify the same chain more

than once if the direction of the chain is the same but state values associated with the chain are different.

The following is an example of parallel scan chains:

pattern pat1 (clock, enable, scanIn, scanOut, scanIn1, scanOut1)

vector(+, scanTiming) := [1 1 1 1 1 1];

scan(+,scanTiming) := [1 1 - - - -],

input[chain1:state1],

output[chain2:estate1],

input[chain11:state3],

output[chain12:estate3] ;
vector(+, scanTiming) := [1 1 1 1 1 1];

vector(+, scanTiming) := [1 1 1 1 1 1];

end

Start Example

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

42

It is illegal for a scan chain with no input edge signal to follow the reserved word input. It is illegal for

a scan chain with no output edge signal to follow the reserved word output.

The reserved word feedback indicates that the signals appearing on the chain output should be directed

back into the chain input while simultaneously comparing against the specified scan state vector.

Chains referenced in a feedback clause must have both an input and an output signal. For more

information, see “Scan Chain”.

It is important to make certain that signals that terminate scan chains have the proper state character

supplied to them, either from parallel pattern data or from the scan chain associated with the scan run.

The following example illustrates a common error made in using scan chains.

waveform t1

 scancell

 latch1; latch2; latch3; latch4; latch5;

latch6; latch7; latch8;
end

scanstate

 state1 := latch1(0) latch2(0) latch3(0) latch4(0);

 state2 := latch1(0) latch2(0) latch3(0) latch4(1);
. . .
estate1 := latch5(1) latch6(1) latch7(1) latch8(0); estate2 :=

latch5(1) latch6(1) latch7(0) latch8(1); estate3 := latch5(1)

latch6(1) latch7(0) latch8(0);
. . .

end

signal

clock : input;

scanIO : bidir;

scanOut : output;

enable : input;
end

scanChain

chain1 [scanIO, latch1, latch2, latch3, latch4];

chain3 [latch1, latch2, latch3, latch4, scanIO];

chain2 [latch5, latch6, latch7, latch8, scanOut];

Start Example

Waveform Generation Language

TSSI © 1979-2026

43

end
timeplate scanTiming period 200ns

clock := input [0ps:D, 50ns:S, 100ns:D];

enable := input [0ps:S];

scanIO := input [0ps:S];

scanIO := output [0ps:X, 50ns:Q];

scanOut := output [0ps:X, 50ns:Q, 90ns:X];
end
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)

vector(+, scanTiming) :=[1 1 1 - X];
scan(+,scanTiming) :=[1 1 - - -], input[chain1:state1],

output[chain3:estate1];
. . .
end

end

End Example

Waveform Generation Language

TSSI © 1979-2026

44

Edge signals terminating scan chains that are used in the scan runs of a scan pattern row

must contain a sample state of the appropriate directionality in the TimePlate referred to by

the scan pattern row. Signals that appear at the start of a scan chain (input) must include an

S state character, and signals that appear at the end of a scan chain (output) must include a

Q state character in their respective waveform shapes. A given scan chain may appear in

some, but not all, scan pattern rows in a WDB. A single TimePlate may be used in all scan

pattern rows, as long as the state of the edge signal in the scan chain is supplied by the

parallel pattern data of the pattern rows that do not use the scan chain in a scan run.

In the parallel scans chain example, the edge signal scanOut, which is a part of the scan

chain chain2, contains a sample state (Q) in the TimePlate scanTiming. Problems

arise because the associated pattern column contains the placeholder character (-). In this

case, because the edge signal contains the sample state Q, and the Q state requires that a

state exists to be sampled, the associated parallel pattern data must supply that state. The

example does not, and hence is erroneous.

To repair the error you must either supply a state value in the parallel pattern data, or use

chain2 instead of chain3 as the terminal chain in the scan run. The remedial sections

of the examples below are highlighted in bold type face.

An example of state character supplied in the parallel pattern data is:

 . . .
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)

vector(+, scanTiming) :=[1 1 1 - X];
scan(+,scanTiming) :=[1 1 - - X], input[chain1:state1],

output[chain3:estate1];
. . .
end

end

An example of state characters supplied by a scan chain is:

 . . .
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)

vector(+, scanTiming) :=[1 1 1 - X];
scan(+,scanTiming) :=[1 1 - - -], input[chain1:state1],

output[chain3:estate1], output[chain2:estate1];
. . .
end

end

Start Example

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

45

A complete example of WGL scan structures is provided later in this document.

Subroutines

The Subroutines block is used to define pattern sequences that are called repeatedly from a

Patterns block.

The syntax of the WGL Subroutines block is:

subroutine <subroutineName> PatternRows end

A complete BNF syntactical representation of the Subroutines block follows:

Subroutines ::= “subroutine” <subroutineName> “()”

PatternRows “end”

PatternRows ::= { [<vectorLabel> “:”] (Loop | Repeat | ScanRow) }

Loop ::= “loop” [<loopName>] <loopCount>

PatternRows “end” [<loopName>]

Repeat ::= [“repeat” <repeatCount>] (Vector | Call | Offset)

Vector ::= “vector” Address “:=” PatternExpression [TimeComment] “;”

Address ::= “(” AddressElement { “,” AddressElement } “)”

AddressElement ::= (“+” | <cycleNumber> [Unit] | <timeplateName>)

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

PatternExpression ::= “[” { (<stateString> | <patternIdentifier>) } “]”

TimeComment ::= “(” Time “)”

Time ::= <timeValue> Unit

Call ::= “call” <subroutineName> “()” “;”

Offset ::= “skip” Time “;”

ScanRow ::= “scan” Address “:=” ScanRowElement { “,” ScanRowElement } “;”

ScanRowElement ::= (PatternExpression | ScanRun)

End Example

Waveform Generation Language

TSSI © 1979-2026

46

ScanRun ::= ScanDir “[” <chainName> “:” <stateName> “]”

ScanDir ::= (“input” | “output” | “feedback”)

<subroutineName> is a user-defined name, such as patterns_1, that is used to define a

specific subroutine. PatternRows are definitions of rows of data bits used to supply data to

waveforms when modulated through a TimePlate, as defined in the TimePlate block. The

interpretation of pattern state information is the same as in the most recently preceding

Patterns block; the pattern parameter from the preceding Patterns block also defines the

column interpretation in the subroutines that follow.

You define the contents of a subroutine in the Subroutines block, and access the subroutine

using the reserved word call. When you call the subroutine you defined in the Subroutines

block, WGL jumps to the beginning of the corresponding Subroutines block. On completion

of the subroutine, WGL returns to the part of the WGL code immediately after the call

statement.

An example of a WGL Subroutines block is:

subroutine foo()

 vector(t1) := [1 00011111]; end

The following is an example of a WGL call statement for the subroutine defined in the

example above:

pattern load1 (clock, data[8..15])

vector(0, 0pS, t1) := [1 ZZZZZZZZ];

loop loopName 3

call foo();
vector(+, t1) := [1 00011010];

end loopName

end

Symbolics

The Symbolics block is used to associate an identifier with a bit pattern for a specific signal,

bus, group, scan cell, scan register or scan group, making it easier to specify hardware

operation codes. Also, if a single-bit signal, bus, or group was defined with a symbolic radix,

a Symbolics block must be created that corresponds to the definition.

Start Example

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

47

The syntax of the WGL Symbolics block is:

symbolic SigReference [SymDirection] Radix

SymbolicAssignment end

A complete BNF syntactical representation of the Symbolics block follows:

Symbolics ::= “symbolic” SignalReference [SymDirection] Radix

SymbolicAssignment “end”

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

SymDirection ::= (“input” | “output”) [(“reference” | “timing”)]

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex” | “hexadecimal” | “symbolic”)

SymbolicAssignment ::= [<patternIdentifier>] “:=” PatternExpression “;”

PatternExpression ::= “[” { (<stateString> | <patternIdentifier>) } “]”

Symbols defined in the Symbolics block can be used in place of the corresponding pattern

states in the vectors in the Patterns block.

Each Symbolics block refers to the name of a previously defined signal, bus, group, scan

cell, scan register, or scan group. The reserved word input or output must be omitted for

scan elements. Signals defined using the reserved word bidir may be associated with two

Symbolics blocks. Radix, the radix of the Symbolics block, must also be specified.

PatternExpressions within the block are interpreted in the specified radix.

The <patternIdentifier> can be used in subroutines, pattern blocks, or scan state vectors as a

shorthand for PatternExpression when the radix of the associated signal, bus, group, or scan

element is set using the reserved word symbolic. If a bit pattern is to be entered for which

there is no defined identifier, the pattern may be entered in the radix defined in the

Symbolics block.

The PatternExpression defined for each identifier must contain legal pattern stateStrings.

The number of bits in the PatternExpression must be the same as the number of bits in the

corresponding signal, bus, or group that is associated with it. See “Scan State” for more

information about stateStrings.

The following is an example of a WGL Symbolics block, and a symbolic radix assignment

in pattern block group_in:

 Start Example

Waveform Generation Language

TSSI © 1979-2026

48

signal

inst [0..7] : input radix symbolic;

foo : input;

bar : output;

end
symbolic inst input radix binary

add := [00000001];

sub := [00000010];

mul := [00000011];

div := [00000100];

xor := [10000000];

lsl := [11000000];

asl := [11100000];

end
pattern group_in (foo, inst, bar)

vector(+) := [1 add 0];

vector(+) := [0 div 1];

vector(+) := [1 add 1];
end

All the pattern expressions that make up a Symbolics block must be unique. All the

identifiers must also be unique. Note that WGL supports partially specified symbolic

blocks. It is possible to have identifiers without pattern expressions or pattern expressions

without identifiers.

Pattern data that does not match one of the defined symbols may be entered directly in the

pattern block in the table radix. If an identifier could also be a legal pattern expression, it is

recognized as an identifier Decimal radix may only be used with buses and groups with 32

or fewer scalar member signals.

The following is an example of Symbolics block with unspecified pattern expressions and

identifiers:

signal
data[0..7]: input radix symbolic;

end

symbolic data input radix hex

 GO := [00];
 STOP := [FF];

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

49

 IDLE := [A2];
Missing := [];

:= [22];
end

pattern sample (data)

vector(+):= [GO];

vector(+):= [IDLE];

vector(+):= [01];

vector(+):= [3B];

vector(+):= [STOP];
end

Equation-Specific Program Blocks
This section discusses the specific syntax for each of the equation-specific program blocks

that have not been discussed previously. The WGL equation-specific program blocks:

EquationSheet
EquationDefaults

Use the equation-specific program blocks to assign variable timing values for edge

placement and current, voltage, and frequency level values for signal strength. You enable

equation support by programmatically declaring an EquationSheet block containing at least

one ExprSet sub-block. The ExprSet sub-block contains a list of variables that you create,

paired with their assigned constant values, or expressions used to determine the variable

value.

You can add more control over which variables are used when you create a test program by

declaring the optional EquationDefaults block. The EquationDefaults block specifies which

sets of expressions or constant values assigned to variables in the ExprSet sub-blocks are

used during subsequent transactions with TDS products that interact with a WDB. Third

party tools can follow this rule to output the equation variables.

The following example shows the structure of the equation-specific program blocks in a

WGL file, and the order in which they are declared. While some of the programming blocks

used in the example are optional, the example portrays all possible equation-specific blocks

and sub-blocks.

equationsheet <sheet name>

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

50

 exprset <expression set name>

 expression information goes here
end
exprset <expression set name>

 expression information goes here

end
.

end
equationsheet <sheet name>

 exprset <expression set name> expression information goes here

end
. . .

end equationdefaults

 default information goes here
end

The ExprSet sub-block must be contained within an EquationSheet block and cannot be used

as a stand-alone block.

NOTE
The right side of the equation, delimited by the equal sign (=) on one side and

the terminating newline character, cannot exceed 247 characters. The total

includes white spaces.

In the following manual sections, the equation-specific program blocks are presented in the

order that you would be most likely to use them when creating a WDB that includes

equations.

EquationSheet

EquationSheet blocks allow for the overall organization of variable declarations. An

EquationSheet block contains one or more ExprSet sub-blocks.

The ExprSet sub-blocks contain variable declarations, that is, expressions or constant values

assigned to variable names. To support equations in your WGL file, the WGL file must

contain at least one EquationSheet block with at least one ExprSet sub-block. The number of

EquationSheet blocks in a WGL file cannot exceed 100.

EquationSheet blocks and ExprSet sub-blocks must be declared before they are referenced

in an EquationDefaults block. For this reason, it is a good idea to declare all EquationSheet

End Example

Waveform Generation Language

TSSI © 1979-2026

51

blocks before you declare any EquationDefaults blocks. Additionally, the EquationSheets

blocks must be declared before the TimePlate block.

The syntax of the WGL EquationSheet block is:

equationsheet <equationSheetName> ExpressionDecl end

A complete BNF syntactical representation of the EquationSheet block follows:

EquationSheet ::= “equationsheet” <equationSheetName>

{ ExpessionDecl } “end”

ExpressionDecl ::= “exprset” <exprSetName> { VariableDecl } “end”

The identifier <equationSheetName> is used to name the specific instance of an Equation

Sheet block of the WGL program; it is the unique name of that block.

An <equationSheetName> must be unique within a WGL file and must conform to the naming

conventions for identifiers, as described in “Identifiers” on page 6-6. An <equationSheetName>

has the same length limitations as signal name for your tester and automatic truncation is

performed when EquationSheet names are too long. Any <equationSheetName> that is

identical to a WGL reserved word (See the WGL reserved word list earlier in this document)

is flagged by the WGL parser as illegal. You can still use an <equationSheetName> that is the

same as a WGL reserved word by enclosing the name in double quotation marks (“ ”).

The identifier <exprSetName> refers to an ExprSet sub-block declared within the

EquationSheet block of the WGL program. (For details of the WGL constructs contained in

the ExprSet sub-block, see “ExprSet”.) The <exprSetName> identifier must conform to the

naming conventions for identifiers, as described in “Identifiers”.

The following is an example of two EquationSheet declarations:

equationsheet AC

exprset SET1

tclk1 := tclk + 10nS;

write_cycle := tclk1*3;

tclk := 35nS;

Vcc := 4.5V;

end

exprset SET2

tclk1 := tclk + 20nS;

write_cycle := tclk1*2;

tclk := 40nS;

Vcc := 5.0V;

Start Example

Waveform Generation Language

TSSI © 1979-2026

52

end

equationsheet AC_control

exprset Control_set
Vih := Vcc-0.5V;
Vil := Vih-3.0V;

end
end

ExprSet

ExprSet sub-blocks are contained within EquationSheet blocks. They contain precise

assignments of expressions and constant values to variables.

The syntax of the WGL ExprSet sub-block is:

exprset <exprSetName>

{ VariableDecl }

end

A complete BNF syntactical representation of an ExprSet sub-block follows:

VariableDecl ::= <variableName> “:=” [Expression] [“[“ MinMax “]”] “;”

Expression ::= Constant | <variableName>

| Expression Operator Expression

| “(“ Expression “)” | (“+” | “-”) Expression | BuiltInVar

| BuiltInFunc (Expression [, Expression])

| (“++” | “--”) Expression | Expression (“++” | “--”)

BuiltInVar ::= “PI” | “E” | “DEG”

BuiltInFunc ::= “ACOS” | “ASIN” | “T AAN” | “CEIL” | “COS” | “COSH”

| “EXP” | “AFBS” | “FLOOR” | “LOG’ | “LOG10”

“ SIN” | “SINH” | “SQRT” |A “NT” | “TANH” | “ATAN2”

| “POW”

Operator ::= (“+” | “-” | “*” | “/” | “^”)

Constant ::= (<integerValue> | <floatingPointValue>) [Scale] [EqUnit]

Scale ::= (“p” | “n” | “u” | “m”)

EqUnit ::= (“A” | “V” | “S” | “H”)

End Example

Waveform Generation Language

TSSI © 1979-2026

53

MinMax ::= Constant | “,” Constant | Constant “,” Constant

An ExprSet sub-block is contained within an EquationSheet block and must have a unique

name, the <exprSetName>, within the context of the EquationSheet block that contains it.

Multiple ExprSet sub-blocks can be declared within an EquationSheet. Multiple ExprSet

sub-blocks allow for the assignment of more than one value or expression to a variable.

The ExprSet sub-block begins with the reserved word exprset followed by the

<exprSetName>, which must conform to the naming conventions for identifiers, as

described in “Identifiers”. The body of the ExprSet sub-block contains a list of

<variableName>s and the values assigned to them. The sub-block ends with the block

terminator, end.

The the number of ExprSet sub-blocks within a EquationSheet block in a WGL file cannot

exceed 100. An <exprSetName> must conform to the same length limitations as signal

names for your tester; automatic truncation is performed when ExprSet sub-block names are

too long.

An <exprSetName> is case sensitive and must begin with an alphabetic character.

<exprSetName>s that are identical to WGL reserved words (see the WGL reserved word

list) are flagged by the WGL parser as illegal. You can still use a name that is the same as

a WGL reserved word by enclosing the name in double quotation marks (“ ”).

While no two <equationSheetName>s can be identical, there can be multiple identical

<exprSetName>s and <variableName>s, provided that identical <exprSetName>s are not

contained in the same EquationSheet block. Multiple identical <variableName>s are also

legal, provided that they are not contained in the same ExprSet sub-block.

The following example shows an illegal usage of <exprSetName>s and <variableName>s.

THE FOLLOWING USE OF IDENTICAL EXPRSET NAMES IS ILLEGAL

equationsheet Sheet_1 exprset

worst

Vcc1:= 4.5V;

TempDegC1 := 70;

Textern1 := 10nS;

end

exprset best

Vcc1 := 5.75V;

TempDegC1 := 0;

Textern1 := 0nS;

end

Start Example

Waveform Generation Language

TSSI © 1979-2026

54

 exprset worst {THIS EXPRSET NAME IS ILLEGAL BECAUSE IT HAS ALREADY

BEEN USED IN THIS EQUATIONSHEET BLOCK}

Vcc1:= 3.0V;

TempDegC1 := 90;

Textern1 := 50nS;

Vcc1:= 5.0V { THIS VARIABLE NAME IS ILLEGAL BECAUSE IT OCCURS IN THE

SAME EXPRSET SUB-BLOCK AS AN IDENTICALLY NAMED VARIABLE.} end

equationsheet Sheet_2 exprset

worst

Vcc2:= 4.5V;

TempDegC2 := 70;

Textern2 := 10nS;

end

exprset best

Vcc2 := 5.75V;

TempDegC2 := 0;

Textern2 := 0nS; end

Variables

The <variableName> identifier gives a unique name to a variable that can then be referenced

in other parts of the WGL file. The identifier <variableName>, must conform to the naming

conventions for identifiers, as described in “Identifiers”.

Once you assign a value to a <variableName> (or declare the variable) in an ExprSet sub-

block, you can reference the <variableName> in the TimePlates block to specify the cycle

period or to specify times at which events within TimePlates occur. You can also reference

<variableName>s in the TimingSets block to specify a time assignment to a timing

generator. Additionally, a <variableName> can be referenced by expressions within

ExprSet sub-blocks in EquationSheet blocks other than the one in which the variable was

declared.

All variable declarations within an EquationSheet block are unique to that EquationSheet

block. A variable of the same name cannot be declared in another EquationSheet block, but

it can be declared again in another ExprSet sub-block contained in the same EquationSheet

block. In fact, that is the main purpose of multiple ExprSet sub-blocks: to provide a way

for you to reassign the value of a variable by naming it in another ExprSet sub-block and

giving it a different value.

Any <variableName> declared in any ExprSet sub-block in the WGL file can be referenced

in other expressions in the same EquationSheet block or in other EquationSheet blocks.

End Example

Waveform Generation Language

TSSI © 1979-2026

55

Forward referencing of variables is allowed. This means that you can reference variables

even though those variables are not declared until later in the WGL file.

When you declare a variable in an ExprSet sub-block, the variable name is added to a

conceptual list of all the variable names that are declared in all of the ExprSet sub-blocks

contained in an EquationSheet block. The set of variable names on the list is actually

associated with the EquationSheet block containing the ExprSet sub-block in which the

variable was declared. The value assigned to the variable, however, is associated with the

ExprSet sub-block.

A conceptual model of the arrangement of equation sheet/expression set data contained

within the WGL, follows:

Figure 2. Conceptual model of equation sheet data organization.

Variable Description xpression E Value Constraints

EXPRESSION SET_1

WGL

EQUATION SHEET_2

EQUATION SHEET_<n>

QUATION SHEET_1 E

c lock_per clock cycle 2 50 nS 250 nS

EXPRESSION SET_2

EXPRESSION SET_<n>

ed ge1 clock pulse1 5 0 nS 50 nS

ed ge2 clock off1

ed ge3 clock pulse2
ed ge4 clock off2

edge5 clock pulse3

Waveform Generation Language

TSSI © 1979-2026

56

For example, if you have an EquationSheet block that contains three ExprSet sub-blocks,

and in each sub-block you assign values or expressions to two of the variables, the

EquationSheet block will have a list of six unique variable names associated with it. On

any given ExprSet sub-block, the two variables to which you assigned values have valid,

assigned values; the other four variables associated with the EquationSheet block are

unassigned, having no value associated with them.

This becomes important when you use the EquationDefaults block to specify which ExprSet

sub-block from an EquationSheet you want to use to assign values to variables. Since all the

variables from all of the ExprSet sub-blocks are on the EquationSheet variable name list,

you must make certain to explicitly re-declare all variables from all of the ExprSet sub-

blocks contained in the EquationSheet block mutually in every other block. Any variable

name that is on the list but has no explicit value assigned to it in the active ExprSet sub-

block is given an “unassigned” value. While it is syntactically permissible to have

unassigned variables in your WGL file, it is a bad practice to do so; if you use any variable

that is not explicitly assigned a value in an ExprSet sub-block, and that sub-block is named

in the EquationDefaults block, the variable will violates the WGL standard and will cause

error in the target tester test program. When you use the TDS WGL In Converter to convert

your WGL file to a WDB, this violation will be caught. For more information on how to use

the EquationDefaults block, see “EquationDefaults”.

There is no limit to the number of variables within an ExprSet sub-block. A <variableName>

must conform to the same length limitations as signal names for your tester; automatic

truncation is performed when a <variableName> is too long.

<variableName>s are case sensitive and must begin with an alphabetic character.

<variableName>s that are identical to WGL reserved words should be flagged by any WGL

parser as illegal. You can still use a name that is the same as a WGL reserved word by

enclosing the name in double quotation marks (“ ”).

An example of a valid ExprSet sub-block variable is: volt := 5.5V

where volt is the variable to which a value is assigned.

Constants

A Constant can be either an integer (<integerValue>) or a floating-point number

(<floatingPointValue>).

An example of a valid ExprSet sub-block constant is:

t := 3 where 3 is the constant value assigned to the variable t.

Waveform Generation Language

TSSI © 1979-2026

57

Expressions

An expression is a formula for combining variables, constants, or other expressions in a

mathematical way. An expression can be something as simple as a constant value, a

reference to a variable, or a combination of constants and variables related to each other

with mathematical operators (such as +, -, *, and /).

An example of a valid ExprSet sub-block expression is:

clock := 10nS*t

where 10nS*t is the expression whose calculated value is assigned to the variable clock.

Operators and Incrementors

The ExprSet sub-block supports a list of standard mathematical operators that you can use

when writing an expression.

Table 2 is a list of operators, listed in order of decreasing precedence. Operators with the

same level of precedence are grouped and separated from operators of differing precedence

by bold lines:

Table 2. Equation Operators

Operator Operation

* multiplication

/ division

+ addition

- subtraction

^ exponent

Built-ins

You can use any of a number of predefined variables or functions in the ExprSet sub-block.

The predefined variables (BuiltInVar) are listed in the following table:

Table 3. Built-in Variables

WGL BuiltInVar Value

E 2.718281828459045523536

Waveform Generation Language

TSSI © 1979-2026

58

DEG 57.2957795130823208768

PI 3.14159265358979323846

The following example shows the use of a built-in variable, PI:

where the variable hi_volt will receive the value of another variable, low, multiple by

3.14159265358979323846.

The following table lists the built-in functions (BuiltInFunc) supported in the ExprSet sub-

block:

Table 4. Built-in Functions

WGL BuiltInFunc Performs Operation

ACOS arc cosine

ASIN arc sine

ATAN arc tangent

CEIL ceiling (round up to integer)

COS cosine

COSH hyperbolic cosine

EXP exponential ex

FABS absolute value

FLOOR floor (round down to integer)

LOG natural logarithm

LOG10 base 10 logarithm

SIN sine

SINH hyperbolic sine

Start Example

End Example

hi_volt := low * PI

Waveform Generation Language

TSSI © 1979-2026

59

SQRT square root

TAN tangent

TANH hyperbolic tangent

ATAN2 arc tangent y/x

POW xy

The following example shows the use of a built-in function, LOG:

where the variable sim_time will receive the value of the natural logarithm of another

variable, clock.

Annotations

Annotations are supported and may be attached to variables in the ExprSet sub-block

through the use of curly braces ({ }). Only one annotation is allowed per variable. If a

variable is encountered in multiple ExprSet sub-blocks with different annotations, the

contents of the annotations are concatenated in the resultant WDB. For identical

annotations, only the first instance of the annotation is stored in the WDB, the remaining

instances being discarded as redundant.

For further information on how to use WGL annotations, see “Annotations” later in this

document.

Scaling

You can scale constant values assigned to variables by specifying a value for Scale.

Scale works in concert with EqUnit (see “Units of Measurement”) to permit you to adjust

the unit of measurement to suit your needs. The scale prefix must follow the constant to

which it applies with no intervening white space and must precede the EqUnit value that it

modifies.

The following scale factors represent the available scaling multipliers for constants:

Table 5. Scaling prefixes

Start Example

End Example

sim_time := LOG (clock)

Waveform Generation Language

TSSI © 1979-2026

60

Suffix Multiplier

p (pico-) 10-12

n (nano-) 10-9

u (micro-) 10-6

m (milli-) 10-3

You can add the scaling prefix to modify the basic units of measurement, as described in

“Units of Measurement”.

An ExprSet sub-block using a scaled constant is shown in the following example. In the

example, the scaled constant is identified by a WGL annotation:

exprset AC

Vol := 2mV; {THIS CONSTANT IS SCALED TO 10-3 }

end

Units of Measurement

Use EqUnit to specify a unit of measurement to be associated with a constant value. You

can specify the following units of measurement in the ExprSet sub-block:

Table 6. Units of Measurement

WGL
Notation

Unit

A ampere

H hertz

S Second

V volt

You can add a scaling factor to modify the basic units of measurement, as described in

“Scaling”.

A WGL fragment showing a EqUnit setting affixed to a constant value assigned to a variable

follows:

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

61

exprset timing

clock := 200nS; { Note the use of the “S” unit value.}
end

Minimum and Maximum Ranges

MinMax lets you specify minimum and maximum values when setting a valid minium value,

a valid maximum value, or a valid range (between minimum and maximum, including both).

This capability is supported through the use of square brackets ([]). If you want to specify

both minimum and maximum values you must list the minimum value first (2.2), followed

by a comma, followed by the maximum value (5.7), for example, [2.2,5.7].

To specify only the maximum value, provide a comma as a place holder, followed by the

maximum value (7.25), for example, [,7.25].

Square brackets around an individual value, for example, [2.5], is all that is required to

specify a minimum value (2.5) only. White space is optional in all cases. Minimum and

maximum values can be expressed only using constant values.

A WGL fragment showing a MinMax setting for a variable follows. The variables with

MinMax settings are identified by annotations.

exprset AC_20mhz

tclk := 20nS;

tempDegC := 70;
Vcc := 4.5V;
V1 := Vcc/2;
Vih := Vcc-1 [, 5.5V]; {maximum value specified here }

Vil := Vih-3 [0.25V];{minimum value specified here} t1 :=

tempDegC/20*1.1nS + tclk;
write_cycle := tclk*6 [60nS, 600nS]; {min and max specified here}

cycle_time := 100nS;
end

EquationDefaults

The EquationDefaults block establishes which ExprSet sub-blocks are to be used as defaults

for calculations. The syntax of the WGL EquationDefaults block is:

Start Example

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

62

equationdefaults DefaultsDecl end

A complete BNF syntactical representation of the EquationDefaults block follows:

EquationDefaults ::= “equationdefaults” DefaultsDecl “end”

DefaultsDecl ::= <equationSheetName> “:” <exprSetName>

{ “,” <equationSheetName> “:” <exprSetName> } “;”

The EquationSheet blocks named by the <equationSheetName> and ExprSet sub-blocks

named by the <exprSetName> must be defined before they are referenced in an

EquationDefaults block.

All EquationSheet blocks are active in the database but only one ExprSet sub-block per

EquationSheet block is active for calculations. EquationSheet blocks and their active

ExprSet sub-blocks are explicitly identified through the use of the EquationDefaults block

and are specified using a comma-separated list of pairs ending with a semi-colon. These

“equation sheet/expression set pairs” are specified by listing the EquationSheet name first,

followed by a colon (:), followed by the ExprSet sub-block name. White space is optional.

An example of an EquationDefaults block is shown below with two equation

sheet/expression set pairs. In this example, the ExprSet sub-block SET1 is associated with

EquationSheet AC and the ExprSet sub-block Control_20mhz is associated with the

EquationSheet AC_control.

EquationDefaults
AC:SET1;
AC_control:Control_20mhz;

end

The EquationDefaults block is not required. If this block is not used, the last ExprSet sub-

block declared within each EquationSheet supplies the variable values used for calculations.

If the EquationDefaults block is used, but is not fully specified by explicitly defining an

expression set for each equation sheet in the WDB, the variable values assigned in the last

ExprSet sub-block declared in the EquationSheet block are used.

If you use more than one EquationDefaults block in your WGL file, the equation

sheet/expression set pairs defined in the last EquationDefaults block in the WGL file

override any other equations sheet/expression set pairs in that EquationSheet block.

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

63

If any EquationSheet block is not specified in the EquationDefaults block(s), the variables

in the EquationSheet block obtain their assigned values from the last ExprSet sub-block in

that EquationSheet block.

Using more than one EquationDefaults block in your WGL program is not necessary, and

sometimes leads to confusion. For example, the following WGL fragment shows what

happens when you use two EquationDefaults blocks:

EquationDefaults
AC : Set2;

end
EquationDefaults

timing : eq1;
end

Assume that the only EquationSheet blocks in this WGL file areAC and timing. The first

EquationDefaults block sets the default ExprSet sub-block for the EquationSheet block AC

to Set2, and the second EquationDefaults block sets the default ExprSet sub-block for the

EquationSheet block timing to eq1. However, since every EquationSheet block in a

WGL file is active, there is an implicit equation sheet/expression set pair for timing in the

first EquationDefaults block, and a similar implicit equation sheet/expression set pair for AC

in the second Equationdefaults block. It would be much clearer in this case to define both

defaults in a single EquationDefaults block, as shown below:

EquationDefaults
AC : Set2;

timing : eq1;
end

A valid reason for using more than one EquationDefaults block in your WGL program is

in the case of incremental test program development. For example, you might want to

generate a test program using one set of defaults, then, after evaluating your output, you

might add another EquationDefaults block containing different values. You would

comment out the previous EquationDefaults block, so that you could keep a record of which

defaults you had used during test development. The following example uses such a

technique:

Start Example

End Example

Start Example

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

64

THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_g
#EquationDefaults
AC : Set1;
timing : eq1;
#end

THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_h
#EquationDefaults
AC : Set2;
timing : eq1;
#end

#THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_i
#EquationDefaults
AC : Set2;
timing : eq2;
#end

THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_k
EquationDefaults

AC : Set1;

timing : eq2;
end

The above example records the defaults that were used for test 6170_g, 6170_h, and 6170_i.

The last EquationDefaults block will specify the defaults for test 6170_k when it is run.

Note that the pound signs denoting comment lines do not include the last EquationDefaults

block, therefore leaving the last block uncommented and active.

An example of a typical WGL program, using many of the equation support constructs

discussed in the previous sections of this chapter, is shown below:

waveform equation_test_case

signal
clk :input;

ale :input;

RE :input;
OE :input;
dbus[0..3] :output;

end

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

65

equationsheet AC_control

exprset worst
Vcc := 4.75V;
TempDegC := 70;
Textern := 10nS;

end

exprset best
Vcc := 5.5V;
TempDegC := 0;
Textern := 0nS;

end

exprset typical
Vcc := 5V;
TempDegC := 20;
Textern := 5nS;

end

end

equationsheet AC_timing

exprset eq1
Vil := Vcc - 3.0;

Vih := Vcc - 1.0;
cycle_time := TempDegC/100*1nS + 5V/Vcc*1nS + 100nS;

tclk1 := 20nS;

tclk2 := tclk1 + 20nS;
t1 := TempDegC/100*1nS + 5V/Vcc*1nS + Textern + 10nS;

t2 := 20nS + t1;

t3 := t2 + tclk1;

t4 := cycle_time - 30nS;

t5 := cycle_time - 10nS;
end end

equationdefaults
AC_timing:eq1;
AC_control:typical;

end

timeplate ts1 period cycle_time clk :=

input[0pS:D, tclk1:U, tclk2:D, 90nS:U];

ale := input[0pS:D, t1:S, 80nS:D];
RE := input[0pS:D, t2:S, t3:D];
OE := input[0pS:P, 10nS:S];

dbus[0..3] := output[0pS:X, t4:Q, t5:X];

end

Waveform Generation Language

TSSI © 1979-2026

66

pattern group_ALL (clk, ale, RE, OE, dbus)

vector(0, ts1) := [- 1 1 1 1011];

vector(0, ts1) := [- 0 0 0 XXXX];

vector(0, ts1) := [- 0 0 0 XXXX];

vector(0, ts1) := [- 1 1 1 1111];

end

end

Tester-Specific Program Blocks
This section discusses the specific syntax for each of the tester-specific program blocks that

have not been discussed previously. Use the following tester-specific program blocks to

define tester friendly objects specific to your tester:

Formats
Registers
Pin Groups TimeGens
TimingSets

The tester-specific program blocks are presented in the likely order of use.

Formats

The Formats block is used to define tester-specific waveform shapes. A waveform shape

describes the general outline of a portion of a waveform. No timing information regarding

placement of waveform edges is conveyed in this program block.

The syntax of the WGL Formats block is:

format

FormatDecl

end

A complete BNF syntactical representation of the Formats block follows:

Formats ::= “format” { FormatDecl } “end”

 FormatDecl ::= <formatName> “:” “[” <TDSstate> { “,” <TDSstate> } “]” “;”

FormatDecl is composed of a <formatName>, such as non_return_to_zero,

followed by a colon (:), followed by one or more of the TDS state characters enclosed in

End Example

Waveform Generation Language

TSSI © 1979-2026

67

brackets ([]). The <formatName> must generally conform to the naming conventions of

your tester.

Table 7 below lists TDS state characters. State characters must be expressed using the proper

case, as shown.

Table 7. TDS logic states

TDS Logic State Characters Meaning

D Force logic low

U Force logic high

N Force logic unknown

Z Force logic high impedance

S Force logic substituted from pattern

C Force complement of substituted shape

P Force logic using previous format shape

L Compare logic low

H Compare logic high

X Compare logic unknown (don’t care)

T Compare logic high impedance

Q Compare logic substituted from pattern

R Compare complement of substituted format shape

0 Unknown direction, logic low

1 Unknown direction, logic high

F Unknown direction, logic high impedance

? Unknown direction, logic unknown

NOTE
The placeholder character (-) is used when no Q, R, S, or C appears in the

TimePlate and timing track used for that cycle.

Waveform Generation Language

TSSI © 1979-2026

68

Table 8. WGL-pattern-state to TDS-logic-state mapping

WGL Pattern State Characters TDS Logic State Characters Meaning

0 D Force logic low

1 U Force logic high

X N Force logic unknown

Z Z Force logic high impedance

– not applicable Placeholder

0 L Compare logic low

1 H Compare logic high

X X Compare logic unknown (don’t

care)

Z T Compare logic high impedance

There can be multiple instances of FormatDecl. Each instance is separated by a semicolon

(;).

An example of a WGL Formats block is:

format non_return_to_zero [S];

delayed_non_return_to_zero [P,S];

return_to_zero [D,S,D];

return_to_one :[U,S,U];

return_to_inhibit [Z,S,Z];

surround_by_complement [C,S,C];

force_then_compare [D,S,D,X,Q,X];
end

Registers

The Registers block is used for testers that use registers to control the formats applied to

particular tester pins.

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

69

Format registers are potentially as wide as the number of ATE pins declared in the preceding

Signals block. On input, the Registers block pin list may specify any subset of the ATE pins.

On output, the WGL Out Converter adds every declared ATE pin to the pin list. Each column

of each register may contain a format name declared in a preceding Formats block or a

hyphen character indicating unspecified contents. The binding of formats to pins is

determined by the correspondence of the position in the register declaration to the position

in the pin list. Each register has a name that must be unique among all the registers. Specific

register names, as well as format names, and ATE pin names, are tester specific.

The syntax of the Registers block is:

register (PinList)

RegisterDecl

end

A complete BNF syntactical representation of the Registers block follows:

Registers ::= “register” “(” PinList “)” { RegisterDecl } “end”

PinList ::= <atepinName> { “,” <atepinName> }

RegisterDecl ::= <registerName> “:” “[” { FormatSpec } “]” “;”

FormatSpec ::= (<formatName> | “-”)

Where <atepinName> is an identifier or string previously declared in the atepin clause of a

Signals block, <registerName> is an identifier or string unique among the register

declarations, and <formatName> is an identifier or string previously declared in a Formats

block.

An example of a WGL Registers block is:

register (atepin1, atepin2, atepin3, atepin4)
ForceReg1 : [- non_return_to_zero return_to_zero -];
ForceReg2 : [return_to_one - - -];
CompareReg1 : [- - - return_to_inhibit];

end

Pin Groups

The Pin Groups block is used to associate ATE pins named in the Signals block with entities

called pin groups.

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

70

A pin group is a collection of tester pins that share a common format and set of timing

generators (or strobes). Pin group assignments are normally made during the resource

allocation phase of a tool that writes out the ATE pin files such as the TDS

WaveBridge/TesterBridge tool. Pin group names and attributes, however, are defined in the

pingroup sub-block of the ATE Constraint block of the Test Control Language (TCL) file.

Some testers may have different formatting and timing capabilities associated with pins on

pin cards. Those testers organize their pin groups along the lines suggested by the pin cards.

See the “Test Control Language” section for more information on how to name pin groups

and assign attributes.

A complete BNF syntactical representation of the Pin Groups block follows:

PinGroups := “pingroup” { PinGroupDecl } “end”

PinGroupDecl := <pinGrpName> “:” “[” [PinGroupList] “]” “;”

PinGroupList := <pinElemName> { “,” < pinElemName > }

Any pin that is not explicitly assigned to a named pin group defined in the TCL file is

assigned automatically to the appropriate default pin group, listed in Table 9.

Table 9. Default pin groups

Pin Group Function

IPIN Used as a synonym for all ATE pins that have the direction

input and that are not explicitly assigned to another pin

group.

OPIN Used as a synonym for all ATE pins that have the direction

output and that are not explicitly assigned to another pin

group.

IOPIN Used as a synonym for all ATE pins that have the direction

bidir and that are not explicitly assigned to another pin

group.

NOTE
The functions listed in Table 9 apply only to automatically defined pin groups;

by definition the pins in these groups are not specifically assigned to another

group.

Waveform Generation Language

TSSI © 1979-2026

71

Below is an example of a Signals block mapping signals to ATE pins, with a Pin Groups

block associating the ATE pins named in the Signals block with pin groups defined in the

Pin Groups block.

An example Signals block mapping signals to ATE pins follows:

signal

clk : input atepin[P1:1 tg[BCLK1, CCLK1]];

sig1 : input atepin[P2:2 tg[ACLK1]];

sig2 : input atepin[P3:3 tg[ACLK1]];

sig3 : output atepin[P4:4 tg[WSTRB1]];

sig4 : output atepin[P5:5 tg[WSTRB1]];
sig5 : bidir atepin[P6:6 tg[BCLK2, CCLK2, WSTRB2,

DREL1, DRET1]];

end

pingroup
IPIN : [P1, P2, P3];
OPIN : [P4, P5];
IOPIN : [P6];
GRP0 : [P1];
GRP1 : [P2, P3];
GRP2 : [P4, P5];
GRP3 : [P6];

end

It is an error if a pin group element name has not been previously defined as an ATE pin of

a signal in the Signals block.

TimeGens

The TimeGens block is used to define the tester-specific timing generators for a tester. A

timing generator is used to specify the time values for edge placement in waveform formats.

The syntax of the WGL TimeGens block is:

timegen

TgDecl

end

A complete BNF syntactical representation of the TimeGens block follows:

TimeGens ::= “timegen” { TgDecl } “end”

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

72

TgDecl ::= <timeGenName> [“[” <edgeCount> “]”] “:” TgTyge “;”

TgType ::= (“force” | “compare” | “direction”)

TimeGenDecl is composed of a <timeGenName>, such as WSTRB1[2], followed by an

optional edge count specifier, followed by a colon (:), followed by one of the following

reserved words: force, compare, or direction.

An example of a WGL TimeGens block is:

timegen
ACLK1 : force;
BCLK1 : force;
CCLK1 : force;
WSTRB1[2]: compare;
DRE1[2]: direction;

end

TimingSets

The TimingSets block is used to define the tester-specific timing edges required to represent

the timing waveforms of the hardware design on a tester. Each timing set has a number and

a set of values for the timing generators.

The syntax of the WGL TimingSets block is:

timeset <tsNumber>

TgAssign end

A complete BNF syntactical representation of the TimingSets block follows:

TimingSets ::= “timeset” <tsNumber> { TgAssign } end”

TgAssign ::= <timeGenName> [“[” <edgeNumber> “]”] “:=” TimeReference

[“repeat” <repeatCount> } “;”

TimeReference ::= (Time | <variableName>)

Time ::= <timeValue> Unit

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

73

TgAssign is composed of an existing timing generator name (having been defined in the

TimeGens block), followed by an optional numeric value for edge number enclosed in

brackets ([]), followed by an assignment operator (:=), followed by a numeric value for

time expressed in a supported unit of measurement or a variable having been previously

defined in the ExprSet sub-block of an EquationSheet block. (See “ExprSet”.)

NOTE
A variable used in the TimingSets block must have a value that is meaningful

when expressed in units of time.

An example of a WGL TimingSets block is:

timeset 1
ACLK1 := 10ns;
BCLK1 := 20ns;
CCLK1 := 80ns;
WSTRB1[1]:= 30ns;
WSTRB1[2]:= 80ns;

end

timeset 2
ACLK1 := 10ns;
BCLK1 := 50ns;
CCLK1 := 20ns;
WSTRB1[1]:= 40ns;
WSTRB1[2]:= 60ns;

end

You can use variables in the place of literal time values in the TimingSets block. The

variables must have been previously defined in an ExprSet sub-block of an EquationSheet

block. (See “ExprSet”)

You can also substitute variables for the literal time value associated with a previously

defined timing generator (See “TimeGens”) You can intermix literal time values and

variables in the TimeSets block.

The following example shows how variables that were defined in an EquationSheet block

can be used in a TimeSets block. The use of variables is highlighted by bold typeface.

Start Example

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

74

timeset 0 {ts1}

tgf1 [1] := 0pS;

tgf1 [2] := 20nS;

tgc1 [1] := tclk;

tgc1 [2] := 90nS;

tgd1 [1] := 0pS;

tgd1 [2] := 100nS;

tgf2 [1] := t1;

tgf2 [2] := t2;

tgd2 [1] := 0pS;

tgf3 [1] := 25nS;

tgf3 [2] := 45nS;

tgd3 [1] := 0pS;

tgf4 [1] := 30nS;

tgd4 [1] := 0pS;

tgc5 [1] := t3;

tgc5 [2] := 52nS;

tgd5 [2] := 0pS;
end

Additional Features
WGL supports additional features that can provide further control over the data when

dealing with WGL from other cores. These features let you use predefined WGL statements

in various places throughout the WGL program, bring data into the current WGL file from

other WGL files, and insert comments into the WGL file.

Macros
A WGL macro is a body of valid WGL statements that you can save for later use by giving

the body of statements a macro name (<macroName>). The WGL statements become the

body of the macro, (<macroBody>). This process defines the contents of the macro. You can

recall the contents of the macro that you defined by using a macro invocation. Invoking a

macro is essentially calling on your defined macro by name.

Using a macro is a two-step process. You must first define the macro with a macro definition.

After you have defined the macro, you can invoke it as many times as you want, in any

syntactically correct place in the WGL program, with the macro invocation.

End Example

Waveform Generation Language

TSSI © 1979-2026

75

Macro Definition

The Macro Definition feature follows the same block structure format used by the WGL

program blocks. The following rules apply to the macro definition:

▪ You cannot define other macros within a <macroBody>.

▪ You cannot invoke a macro recursively; you must not define a macro that invokes itself.

▪ You can use a parameter in the macro to indicate places in the macro definition where

values are to be substituted when the macro is invoked and expanded.

▪ You can define macros anywhere in the WGL program, but for ease of WGL program

maintenance, it is a good idea to define macros at the beginning of the WGL file, right after

the beginning program delimiter waveform.

▪ You can define a macro that invokes another previously defined macro.

The syntax of the WGL Macro Definition feature is:

macro <macroName> (MacroParameterList)

<macroBody>

endmacro

A complete BNF syntactical representation of the Macro Definition feature follows:

 MacroDefinition ::= “macro” <macroName> [“(” MacroParameterList “)”]

<macroBody> “endmacro”

MacroParameterList ::= <macroParameter> { “,” <macroParameter> }

In its simplest form, the Macro Definition feature allows you to store a text string under a

reference name. The text string may be quite lengthy, cumbersome, and difficult to

remember. You can retrieve the text string by calling upon the reference name. This is what

happens when you create a macro definition and call up the contents of the <macroBody>

using the Macro Invocation feature. Calling up the contents of the macro is often referred

to as “expanding” the macro because the contents of the macro are inserted in-line into the

code at the place they are called.

A parameter substitution is specified by the ampersand character (@), followed by the

<macroParameter> from the MacroParameterList. The value to be substituted into the

@<macroParameter> is taken from the MacroParameterList, on the first line of the macro

definition. The values for the MacroParameterList are supplied from a list of arguments in

the macro invocation. Each Macro Definition can have a maximum of 128

<macroParameter>s.

Waveform Generation Language

TSSI © 1979-2026

76

Macro Invocation

The Macro Invocation feature is the counterpart to the Macro Definition feature. To invoke

a defined macro, use the name of the defined macro (<macroName>) followed by an

optional list of arguments, the contents of which can be substituted into the optional macro

parameter list of the Macro Definition feature. If you use the argument list, the macro

parameter list must be correspondingly defined in the macro definition.

The syntax of the WGL Macro Invocation feature is:

<macroName> [(ArgumentList)]

A complete BNF syntactical representation of the Macro Invocation feature follows:

MacroInvocation ::= <macroName> [“(” ArgumentList “)”]

ArgumentList ::= <identifier> { “,” <identifier> }

Definition and Invocation without Parameters

Displayed below is an example of a simple macro definition without parameter substitution

from a macro parameter list. This example shows four separate macros: add, sub, mul,

and div.

macro add
00011111

endmacro

macro sub
10101101

endmacro

macro mul
11100001

endmacro

macro div
10111000

endmacro

An example of the macro invocation without parameter substitution is:

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

77

pattern load1 (instBus)

vector(1) := [add];

vector(2) := [sub];

vector(3) := [mul];

vector(4) := [div];

vector(5) := [add];

vector(6) := [add];

vector(7) := [mul];

vector(8) := [sub];

end

An example of the values that exist after macro expansion is:

pattern load1 (instBus)

vector(1) := [00011111];

vector(2) := [10101101];

vector(3) := [11100001];

vector(4) := [10111000];

vector(5) := [00011111];

vector(6) := [00011111];

vector(7) := [11100001];

vector(8) := [10101101];
end

Definition and Invocation with Parameters

You can invoke a macro and substitute values into the macro parameter list by using the

optional argument list with the macro invocation. This gives you added flexibility when

using the macro to perform a repetitive task, such as filling vectors with pattern data.

The following is a macro definition with parameter substitution from a macro parameter list.

This example uses a macro to fill vectors with pattern data. The <macroParameter> s

receives a value from a list of arguments in the macro invocation diagonal_fill

displayed in the subsequent example.

An example of a macro definition with parameter substitution from the MacroParameterList

follows:

Start Example

End Example

Start Example

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

78

macro diagonal_fill (s)

vector(+) : [0000000@s];

vector(+) : [000000@s0];

vector(+) : [00000@s00];

vector(+) : [0000@s000];

vector(+) : [000@s0000];

vector(+) : [00@s00000];

vector(+) : [0@s000000];

vector(+) : [@s0000000];
endmacro

An example of a macro invocation with the argument list for substitution into the macro

parameter list of the macro definition follows:

signal

 data[7..0] : input radix binary;

end

pattern memCheck (data)

 diagonal_fill(0);

 diagonal_fill(1);

 diagonal_fill(Z);

 diagonal_fill(X);

end

An example of the values that exist for the first three macro invocations after expansion of

the macro in the previous example is:

pattern memCheck (data)

vector(+) : [00000000];

vector(+) : [00000000];

vector(+) : [00000000];

vector(+) : [00000000];

vector(+) : [00000000];

vector(+) : [00000000];

vector(+) : [00000000];

vector(+) : [00000000];

vector(+) : [00000001];

vector(+) : [00000010];

vector(+) : [00000100];

End Example

Start Example

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

79

vector(+) : [00001000];

vector(+) : [00010000];

vector(+) : [00100000];

vector(+) : [01000000];

vector(+) : [10000000];

vector(+) : [0000000Z];

vector(+) : [000000Z0];

vector(+) : [00000Z00];

vector(+) : [0000Z000];

vector(+) : [000Z0000];

vector(+) : [00Z00000];

vector(+) : [0Z000000];

vector(+) :

[Z0000000]; . . .

end

Include Files
Data that you use repeatedly, for many different WGL programs, can be stored in separate

ASCII files and called upon by WGL programs. This lets you create a library of such data

files, with each file containing specific types of data in WGL syntax. Typically these are

patterns from cores. To include this data into a WGL program, you use the Include file

feature of WGL.
1

Like a WGL macro, Include files are called by an invocation statement, in this case an

“include” invocation.

You can only invoke a currently existing WGL file that contains syntactically correct WGL

statements. The Include file can contain any valid WGL statements.

The syntax of the Include Invocation feature is:

include <file name>;

A complete BNF syntactical representation of the Include file feature follows:

IncludeInvocation ::= “include” <fileName> “;”

1 . Binary pattern files cannot be included in the WGL program via an Include file statement . See “Binary WGL”

for information on how to include binary formatted files in a WGL file.

End Example

Waveform Generation Language

TSSI © 1979-2026

80

An example file named buses, that can be invoked in a WGL program to be used as an

Include file:

data [31..0] : birdir;

addr [31..0] : bidir;

Use the WGL reserved word include to invoke an Include file. When you invoke the

Include file, you must specify the file name. You can also use an absolute or relative path

when naming the file to be included. The entire invocation is called an include invocation.

There cannot be any other WGL syntax, including comments or annotations, on the same

line as an include invocation.

The following is an example WGL program with an Include file invocation for a file named

buses.dat:

waveform busArbitration

signal
 include “busses.dat”;

end

Annotations
The Annotations feature allows you to insert comments that are translated for inclusion or

processed by downstream 3rd party tools.

The annotations are enclosed within braces ({ }). Generally speaking, if the annotation

occupies the same line as another WGL statement, the annotation is associated with the

characteristic described by the WGL statement. If the annotation occupies a line

exclusively, with no other WGL statement on the same line, the annotation is associated

with the WGL statement immediately following.

The syntax of the Annotations feature is:

{ . . . }

A complete BNF syntactical representation of the Annotations feature follows:

Annotation ::= “{” <any explanatory text> “}”

Start Example

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

81

An example of annotations in a WGL program is:

timeplate read period 300ns

 clock := input [0ps:D, 50ns:U, 100ns:D, 150ns:U, 200ns:D,250ns:U];

in := input [0ps:D, 30ns:U]; {Annotation for the signal ‘in’}
{Annotation associated with the signal ‘out’ below. So

conversion tools must follow precisely or the

purpose of annotation will be for the signal will

be off}
out := output [0ps:X, 70ns:H];

end

Global Mode
The Global Mode feature is used to control attributes of an object in every occurrence of

the object with which the attribute is associated.

pmode Attribute

The pmode attribute defines the state value of the first cycle for those cycles that adopt their

state value from the previous cycle (the P Mode). This feature permits you to tailor the initial

state value of waveforms that, by default, derive their initial state value from the previous

cycle.

Table 10 defines the supported pmode attribute options. Refer to Table 7 for a complete list

of TDS state characters.

Table 10. P Mode definitions

P Mode Setting P is Replaced by Definition

Previous Force
(P_LAST_FORCE)

a force state

(D, U, N, or Z)
If force pattern data for the cycle (associated with the same

signal) is Z:
P is replaced by Z.

If force pattern data for the cycle (same signal) is not Z:

P is replaced by the last force state value on the same

signal (D, U, N, or Z), whether the previous force state is

itself a result of substitution, or is a fixed value.

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

82

Previous Driving
(P_LAST_DRIVE)

D, U, or Z If force pattern data for the cycle (associated with the same

signal) is Z:
P is replaced by Z.

If force pattern data for the cycle (same signal) is not Z:

P is replaced by the last D or U state on the same signal,

whether the previous force state is itself a result of

substitution, or is a fixed value.

Previous, if Force,

else Z
(P_FORCE_OR_Z)

last force state

value, else Z
P is replaced by the last state value on the same signal, if

the last state value is force (D, U, or N) or monitor (d, u, or

n). If the previous state value is other than the above, P is

replaced by Z.

Advantest
(P_ADVANTEST)

a force state If force pattern data for the cycle (associated with the same

signal) is Z:
P is replaced by Z.

If force pattern data for the cycle (same signal) is not Z: P is

replaced by the previous force state if that state is D, U, N,

or Z.

P is replaced by D if the previous state is L or T.

P is replaced by U if the previous state is H or X, but ignores

previous X states that follow force states and are not at the

start of the cycle.

IMS
(P_IMS)

last force state

value, else Z
For scalar (non-multiplexed) signals, P is replaced by the

last state value on the same signal, if the last state value is

force (D, U, or N) or monitor (d, u, or n). If the previous state

value is other than the above, P is replaced by Z.

For multiplexed signals, P substitution is done after

multiplexing. Thus, P substitution for a P state on a

multiplex member depends on states of other mux

members.

Don’t care
(P_DONT_CARE)

N P is replaced by N state.

The syntax of the WGL P Mode attribute is:

pmode [PModeOption];

A complete BNF syntactical representation of the P Mode Attribute feature follows:

Waveform Generation Language

TSSI © 1979-2026

83

GlobalMode ::= “pmode” “[” PmodeOption “]” “;”

PmodeOption ::= (“dont_care” | “last_force” | “last_drive” | “force_or_z” | “advantest” | “ims”)

An example of a pmode attribute definition is:

waveform test.wdb

pmode[dont_care];

signal a : bidir;
end
timeplate io period 500ns

 a := input [0ps:D, 200ns:S, 300ns:D]; a :=

output [0ps:P, 250ns:Q, 400ns:T];
end

end

Examples

Using WGL Macros and Include Files to Simplify

Testing
The following examples illustrate the use of include files and macros in a WGL program

used to generate a test for a microprocessor. The WGL program in

example_Test_Chip.wgl contains only the beginning and ending statements and four

include invocations. An example WGL program using Include files is:

#--
file: example_Test_Chip.wgl
#--
An example showing the use of macros and include files, used to generate
a test for a Test_Chip microprocessor

waveform Test_Chip_test1

include “signals_Test_Chip.wgl”

include “timing_Test_Chip.wgl”

Start Example

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

84

include “macros_Test_Chip.wgl”

include “patterns_1_Test_Chip.wgl”

end

An example WGL Include file containing signal data is:

#--
file: signals_Test_Chip.wgl
#---

signal

AS : output;
AVEC : input;
A[0..31] : output radix hexadecimal;
BERR : input;
BG : output;
BGACK : input;
BR : input;
CDIS : input;
CLK : input;
DBEN : output;
DS : output;
DSACK0 : input;
DSACK1 : input;
D[0..31] : bidir radix hexadecimal;
ECS : output;
FC[0..2] : input;
HALT : bidir;
IPEND : output;
IPL[0..2] : input;
OCS : output;
RESET : bidir;
RMC : output;
”R/W” : output;
SIZ[0..1] : output;

We divide the data bus up into the instruction and data groups

 Inst [D[0..15]] : radix hexadecimal;
 Data [D[16..31]] : radix hexadecimal;

end

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

85

An example WGL Include file containing timing data is:

#--
file: timing_Test_Chip.wgl
#---

timeplate read period 120nS
CLK := input[0pS:U, 20nS:D, 40nS:U, 60nS:D, 80nS:U, 100nS:D];
A[0..31] := output[0pS:X, 20nS:Q, 115nS:X];
FC[0..2] := input[0pS:P, 20nS:S];
SIZ[0..1] := output[0pS:X, 20nS:Q, 115nS:X];
ECS, OCS := output[0pS:X, 8nS:L, 25nS:X];
AS := output[0pS:X, 40nS:L, 100nS:X];
DS := output[0pS:X, 40nS:L, 100nS:X];
”R/W” := output[0pS:X, 10nS:H, 115ns:X];
DSACK0, DSACK1 := input[0pS:U, 70nS:D, 110nS:U];
Inst,Data := bidir[0pS:X, 80nS:S, 130nS:X];
DBEN := output[0pS:X, 50nS:L, 115nS:X];
BERR, HALT, RESET := input[0pS:U, 80nS:D];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N, 45nS:D, 75nS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

end

timeplate write period 120nS
CLK := input[0pS:U, 20nS:D, 40nS:U, 60nS:D, 80nS:U, 100nS:D];
A[0..31] := output[0pS:X, 20nS:Q, 115nS:X];
FC[0..2] := input[0pS:P, 20nS:S];
SIZ[0..1] := output[0pS:X, 20nS:Q, 115nS:X];
ECS, OCS := output[0pS:X, 8nS:L, 25nS:X];
AS := output[0pS:X, 40nS:L, 100nS:X];
DS := output[0pS:X, 60nS:L, 100nS:X];
”R/W” := output[0pS:X, 10nS:L, 115ns:X];
DSACK0, DSACK1 := input[0pS:U, 65nS:D, 110nS:U];
Inst,Data := output[0pS:X, 40nS:Q, 130nS:X];
DBEN := output[0pS:X, 25nS:L, 115nS:X];
BERR, HALT, RESET := input[0pS:U, 80nS:D];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N, 45nS:D, 75nS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

end

timeplate idle period 40nS

Start Example

Waveform Generation Language

TSSI © 1979-2026

86

CLK := input[0pS:U, 20nS:D];
A[0..31] := output[0pS:X];
FC[0..2] := input[0pS:P];
SIZ[0..1], ECS, OCS, AS, DS, “R/W” := output[0pS:X];
DSACK0, DSACK1 := input[0pS:U];
Inst, Data := output[0pS:X];
DBEN := output[0pS:X];
BERR, HALT, RESET := input[0pS:U];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

end

timeplate reset period 40nS
CLK := input[0pS:U, 20nS:D];
A[0..31] := output[0pS:X];
FC[0..2] := input[0pS:N];
SIZ[0..1], ECS, OCS, AS, DS, “R/W” := output[0pS:X];
DSACK0, DSACK1 := input[0pS:N];
Inst, Data := output[0pS:X];
DBEN := output[0pS:X];
BERR, HALT := input[0pS:N];
RESET := input[0pS:D];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

end

An example WGL Include file containing macros is:

#--
file: macros_Test_Chip.wgl
#--

Here are macros defining read and write cycles in terms of only the data
that changes, in the order that you might want to fill them out.

macro readcycle(instr, addr, data16_32, fc0_2, size) vector(+,

read) :=
[- - @addr - - - - - - - - - -
 @instr ----
 @data16_32 ---- -

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

87

 @fc0_2 - - - --- - - - - -
 @size];

endmacro
macro writecycle(instr, addr, data16_32, fc0_2, size)

vector(+, write) :=
[- - @addr - - - - - - - - - -
---- @instr
---- @data16_32 -
 @fc0_2 - - - --- - - - - -
 @size];

endmacro macro

idlecycle
 vector(+, idle) := [- - -------- - - - - - - - - - - ---- ----

---- ---- - --- - - - --- - - - - - --];
endmacro macro

resetcycle
 vector(+, reset) := [- - -------- - - - - - - - - - - ---- ----

---- ---- - --- - - - --- - - - - - --];
endmacro

NOTE
The hyphens (-) in the previous example are placeholders for pattern data

supplied for the macros readcycle, writecycle, idelcycle, and resetcycle by the

WGL Include file shown in the example below.

An example WGL Include file containing pattern data is:

#--
file: patterns_1_Test_Chip.wgl
#--

here are the patterns for test1

pattern group_ALL (AS,AVEC,A,BERR,BG,BGACK,BR,CDIS,CLK,DBEN,DS,DSACK0,DSACK1,

Inst:I,Inst:O,Data:I,Data:O,ECS,FC,HALT:I,HALT:O,IPEND,IPL,OCS

,RESET:I,RESET:O,RMC,R/W,SIZ)

repeat 512 resetcycle

readcycle(B61B, B6EE13D6, FCA3, 100, 00)

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

88

writecycle(9691, F0201827, A308, 111, 10) idlecycle

readcycle(4281,F0201827,4314,111,10)

writecycle(30C2,E4394013,4460,011,11)

readcycle(EB3C,86F78F4C,F616,100,11)

writecycle(EE53,9C32C7BA,E9EC,101,00)

readcycle(BF16,D44C5EB1,DF57,000,11)

writecycle(8D54,E7AB41EC,2927,100,00)

readcycle(7ABC,8316DF68,0744,001,10)

writecycle(69D0,AE31A3A2,0DF0,001,01)

idlecycle
readcycle(7A64,D3B28D8E,A4D6,011,11)

writecycle(4F7E,CFFE12F7,4850,011,11)

readcycle(9A5F,225D2C89,F66B,010,11)

writecycle(619D,7721483A,4862,000,10)

end

Using WGL to Support Scan Test Hardware
This example WGL file illustrates a simple scan test using the scan hardware associated with

the device shown in Figure 3.

Figure 3. Example device with scan hardware

The device in Figure 3 has a number of input, output, and bidirectional signals, including

CLK, MODE, SC_IN, and SC_OUT. Internal cells on the scan chain are declared in the

scanCell block of the following example WGL files.

A partial example WGL file supporting scan test is:

End Example

D[0]

D[1]

D[2]

D[3]

D[4]

D[5]

D[6]

D[7]

A

B

C

SC_IN

CLK
SC_OUT

MODE

1 2 3 4

FF1 B2

LTCH[]

Start Example

Waveform Generation Language

TSSI © 1979-2026

89

waveform scan_example

signal
A : input;
B : input;
C : output;
SC_IN : input;
SC_OUT : output;
CLK : input;
MODE : input;
D[0..7] : bidir;

end

scanCell
FF1 ;
B2 ;
LTCH[1..4] : radix hexadecimal;

end

scanchain

chain1 [SC_IN, LTCH[1], FF1, !, B2, LTCH[4], LTCH[3], LTCH[2],
SC_OUT];

end

scanState

stateX := ;
state1 := FF1(1) B2(0) LTCH(A);

state2 := FF1(1) B2(1) LTCH(X);

state3 := ALLSCAN(010101);
end
. . .

The scan chain shift order is described in the scanchain block above. Note the

inverter placed in the chain between cells FF1 and B2. The states that are set

in these cells by scan-in operations or tested during scan-out operations are

declared in the scanState block.

The test waveform consists of two parallel vectors, followed by a six-cycle scan sequence

that shifts a new state into the internal cells while simultaneously sampling the scan chain

output and comparing it with another expected state. At the end of the scan operation, two

more parallel vectors are applied and the scan is repeated with different input and output

states.

A partial example of WGL file with scan entities is:

timeplate tp1 period 500nS
A, B, SC_IN, MODE, D := input[0pS:P, 100nS:S];

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

90

C, SC_OUT, D := output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];

end
timeplate scanPlate period 500nS

A, B, SC_IN := input[0pS:P, 100nS:S];
SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];
D := input[0pS:P];
MODE := input[0pS:P, 100nS:U];
C, D := output[0pS:X];
CLK := input[0pS:D, 250nS:U];

end

 pattern group_ALL (A, B, C, SC_IN, SC_OUT, MODE, D:I, D:O)

vector(tp1) :=[1 0 X X X 0 11010000 --------];

vector(tp1) :=[1 0 0 X X 0 -------- 11111110];

scan(scanPlate) :=[0 1 - - - - -------- --------],

 input[chain1:state1],
output[chain1:stateX];

vector(tp1) :=[1 1 X X X 0 00011101 --------];

vector(tp1) :=[1 1 0 X X 0 -------- 01010101];

scan(scanPlate) :=[0 0 - - - - -------- --------],

input[chain1:state3],
output[chain1:state2];

vector(tp1) := [0 0 X X X 0 11010011 --------];

vector(tp1) := [1 1 0 X X 0 -------- 01010101];
end

end

In the example above, two TimePlates are used: tp1 and scanPlate. tp1 is used on

parallel pattern rows. scanPlate is used during scan operations. Note that S and Q

shapes appear on those tracks associated with scan in and out signals. Signals A and B use

pattern data defined in the scan rows.

The WGL Patterns block illustrates parallel vectors interspersed with scan operations. The

scan vectors refer to the scan TimePlate and specify which states are scanned in and out

using the specified chain. For example, the first scan vector scans in state1 and

simultaneously scans out stateX. Since the specified chain is six cells in length, the scan

vectors each have a duration of six cycles.

End Example

Waveform Generation Language

TSSI © 1979-2026

91

Using Annotations in WGL
In WGL syntax, annotations are “legal” anywhere, as long as they are enclosed in braces ({ }).

In this sense, annotations are treated exactly like WGL comments. However, there are

locations that are meant to be internally used only (or should be ignored).

The example below shows a WGL file with annotations added in various locations

throughout the file. The locations to be ignored will be indicated by “{lost}.

{ lost } waveform wdb1 { lost }

{ lost }

signal { lost }

 a { a1 } : input;

b : input; { b1 }

c : {c1} input;
{c2}d : input;

 e[1..10{e1}] : input;

end { append to last sig }

scancell

 cell1; { sc1 }

 cell2; { sc2 }

 reg1; { reg1 }

end { lost }

scanchain

 chain1 {c1} [a, cell1 {c2}]; { lost }

end { lost }

scanstate

 state1 {moved} := cell1(1) {moved} cell2(1); {s3}

end { lost }

timeplate tp1 {lost} period {t2} 200ns {t3}

a{s1},b{lost} := input[0ps:D {lost}, 50ns:S, 100ns:D]; {s4}

c{s5},d{lost} := input[0ps:D {lost}, 50ns:S, 100ns:D]; {s6}

end

pattern load1 (a)

 vector (+,tp1) := [1]; {v1}

Start Example

Waveform Generation Language

TSSI © 1979-2026

92

 vector (+,tp1) := {v2} [1];

 vector {v3} (+,tp1) := [1];

 vector (+,tp1{v4}) := [1];

end

end {lost }

Binary WGL
A binary format of the pattern vectors, to be used in place of ASCII pattern data, is

supported within WGL. This capability allows you to use WGL binary pattern data from a

CAE simulation
1
 in a more compact way.

The binary pattern data in the Pattern section provides a compact data representation for

users who are not concerned about readability but who are concerned about file size and run

time. WGL binary pattern data has the following advantages over WGL ASCII data:

▪ A large number of vectors take up less disk space.

▪ The WGL In Converter reads binary data quicker than ASCII data.

▪ Scan state vector information is provided directly on a vector row. (In ASCII form,

scan state vector information cannot be provided directly on a vector row in the

pattern section but must be de-referenced through a scan state name. This results in

large amounts of scan data in the upper portion of the WGL file, making it less

readable.)

WGL Binary Interface
Binary pattern data may be specified in a separate file (preferred) or included in the WGL

file.
2
 Binary pattern files are included in the WGL program via a BinaryPattern file

command, not via an Include file statement. (You cannot mix ASCII pattern vectors with

binary pattern data.)

1 . Various CAE simulators output the binary formatted pattern data as specified in this section.
2 . Do not edit a WGL file that has binary pattern data; null pattern bits may be deleted by the editor.

End Example

Waveform Generation Language

TSSI © 1979-2026

93

Binary WGL is a subset of ASCII WGL and there is not an exact one-to-one

correspondence between ASCII and binary WGL. Some WGL structures are not supported

in binary, including symbolic assignments, macros, vector labels, and comments.

Including Binary Files

To signify that binary pattern data is supplied in place of the Patterns block within WGL,

use the BinaryPattern command, followed by the binary data.

BinaryPattern; <carriage return>

If the binary pattern data is supplied in a file separate from the WGL file, then the file

parameter must also be specified, followed by the file name where the binary pattern file

resides.

BinaryPattern file:=binary.data; <carriage return>

The following example WGL file shows theBinaryPattern command. WGL statements

(including the ScanState and Patterns block) that are not used with binary pattern data are

shown as comments. (That is, preceded with a #.)

waveform scan_example

signal
SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUT2 : output;
CLK : input;

end

scanCell
FF1 ;
B2 ;

C1 ;
D1 ;

LTCH[1..4] : radix hexadecimal;

end

scanchain

 chain1 [SC_IN, LTCH[1], LTCH[4], LTCH[3], LTCH[2], SC_OUT];

 chain2 [SC_IN2, FF1, B2, C1, D1, SC_OUT2];

end

Start Example

Waveform Generation Language

TSSI © 1979-2026

94

#scanState
state1 := chain1(1101) chain2(1001);
state2 := chain1(1011) chain2(0001);
state3 := chain1(0X00) chain2(1X10);
state4 := chain1(0X00) chain2(1XXX);
state5 := chain1(0101) chain2(0000);
state6 := chain1(XXXX) chain2(XXXX);
#end

timeplate tp1 period 500nS
SC_IN, SC_IN2 := input[0pS:P, 100nS:S];
SC_OUT, SC_OUT2 := output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];

end

timeplate scanPlate period 500nS
SC_IN2, SC_IN := input[0pS:P, 100nS:S];
SC_OUT2, SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];

end

binarypattern file := testd.tmp;

#pattern group_ALL (CLK, SC_IN, SC_OUT, SC_IN2, SC_OUT2)
vector(tp1) := [- X X X X];
vector(tp1) := [- X X X X];
scan(scanPlate) := [- - - - -],
input[chain1:state1], output[chain1:state3],
input[chain2:state1], output[chain2:state3];
vector(tp1) := [- X X X X];
vector(tp1) := [- X X X X];
scan(scanPlate) := [- - - - -],
input[chain1:state2], output[chain1:state4],
input[chain2:state2], output[chain2:state4];
vector(tp1) := [- X X X X];
scan(scanPlate) := [- - - - -],
input[chain1:state5], output[chain1:state6],
input[chain2:state5], output[chain2:state6];
vector(tp1) := [- X X X X];
#end

end

 End Example

Waveform Generation Language

TSSI © 1979-2026

95

Binary File Format
The following sections illustrate ASCII WGL formats and equivalent binary WGL formats.

If you are reading binary format files (including binary pattern data in a WGL file), you do

not need to know this information. However, if you will be writing binary files, you must

adhere to the following formats.

The following format conventions are used in this section:

▪ For readability, characters are shown with the entire string in quotes. In the binary file, the

characters are in binary format.

▪ Numbers are shown in hexadecimal, instead of binary; the 0x preceding a value indicates

hexadecimal notation.

▪ Spaces are added for clarity.

▪ Braces and brackets are used as described in “WGL Syntax Notation Conventions”.

The binary format is processed using standard I/O routines; the binary file is not parsed. In

addition, the binary file is not context sensitive.

Definitions

To ensure that the binary format is machine independent, data bits must be written out

consistently across machines. The following definitions are required to ensure machine

independence.

Table 11. Binary Definitions

Item Description

byte 8 bits (unsigned) MSB to LSB

short 16 bits (unsigned) MSB to LSB

long 32 bits (unsigned) MSB to LSB

char 8 bits (unsigned) MSB to LSB

chars Multiple characters

Line Format

All lines in the WGL binary section conform to the following format.

byte_count line_type {rest-of-line}

Table 12. Components of Line Format

Waveform Generation Language

TSSI © 1979-2026

96

Item Type Description

byte_count short The length of the line_type and rest-of-line in bytes

(excludes byte_count)

line_type short Byte which describes the line type (See Table 13.)

rest-of-line Varies depending on the line type (See Table 14

through Table 32.)

The line length is specified by the byte_count at the beginning of each line. (No specific line

termination is provided.)

Line Type

The line_type field is an unsigned short which specifies the intent of the line.

Table 13 shows the mapping.

Table 13. Hexadecimal Values for Each Line Type

Hexadecimal Line Type

0x0000 Vector Line

0x0001 Subroutine

0x0002 End Pattern

0x0003 Loop

0x0004 End Loop

0x0005 Subroutine Call

0x0006 Skip

0x0007 Scan Parallel

0x0008 Scan Chain

0x0009 Repeat

0x000a Pattern Header

0x000b Annotation

0x000d Map Key

Waveform Generation Language

TSSI © 1979-2026

97

0x000e End Subroutine

0x000f End Binary (ASCII WGL

statements follow)

0x00ff Version Control

Line Type Ordering

The binary pattern information must follow the same ordering restrictions required by

ASCII WGL. (See “Patterns”) That is, the pattern header is followed by the vectors, which

are followed by the subroutine definitions. In addition, the following restriction must be

followed:

▪ The version control line is required to be the first line in the file, if a separate binary

file is supplied. Otherwise, the version control line is expected to immediately

follow the BinaryPattern declaration in the WGL file.

▪ Binary WGL requires unique end statements for subroutines, loops, and patterns.

Line Type Description

The following discussion describes the syntax for each of the line types.

Version Control

The version control line denotes the binary file version. It is required to be the first line in

the WGL binary section. (Although not planned, it is possible that future versions of the

binary file may have a different format. All future readers, however, will be expected to read

earlier versions of binary files.) The format is:

byte_count line_type version_number version_extension

Table 14. Version Control Line Type

Item Type Description

line_type short 0x00ff

version_number short Version 1 is described in this document.

version_extension short Extension number; initially 0

Start Example

End Example

0 x0006 0x00ff 0x0001 0x0000

Waveform Generation Language

TSSI © 1979-2026

98

Pattern Header

The WGL Pattern block begins with a pattern header line. This line defines a pattern name,

and a list of signals and directions. The binary format would be an encoding of this. The

general syntax would be:

byte_count line_type name_len name signal_columns

{signal_dir signal_len signal_name bus_flag

[begin_range end_range]}

Table 15. Pattern Header Line Type

Item Type Description

line_type short 0x000a

name_len short Number of characters in pattern group name

name chars Pattern group name

signal_columns short Total number of signal columns for the

vectors

signal_dir byte Column direction where:
0x00 = input column for a bidir signal,
0x01 = output column for a bidir signal,
0x02 = column direction is not required

because signal is input or output but not

bidirectional

signal_len short Number characters in signal name

signal_name chars Signal name

bus_flag byte Indicates if a signal is a bus: 0x00 = no; 0x01

= yes

begin_range short First value in range; this field is read only

when bus_flag = 0x01

end_range short Second value in range; this field is read only

when bus_flag = 0x01

Example WGL:

Start Example

End Example

pattern burst (sigA:I, sigA:O, BX)

Waveform Generation Language

TSSI © 1979-2026

99

Equivalent binary:

0x0021 0x000a 0x0005 "burst" 0x0003 0x00 0x0004 "sigA" 0x00 0x01 0x0004
"sigA" 0x00 0x02 0x0002 "BX" 0x00

Example WGL, illustrating multiplexed signals: The Signal block contains a multiplexed

parent and four multiplexed children.

signal

 muxsig1 [sig1_1, sig1_2, sig1_3, sig1_4]: mux input;

end

pattern group_ALL (sig1)

Equivalent binary, illustrating multiplexed signals: signal_columns is set to four,

indicating the total number of columns of pattern bit information associated with any vector

in the pattern block.

Example WGL, illustrating a bus with no range specification: A data bus can be listed

in the pattern header without specifying the range and order of the bits. (The range and order

specified for a signal within the Signal block is used if none is given on the pattern header.)

signal sig1 :

input;
data[0..7] : input radix binary;

pattern group_ALL (sig1, data)

Equivalent binary, illustrating a bus with no range specification: As specified in the

Signal block, the range for this bus is from 0 to 7. The binary format does not require the

range to be specified on the pattern header if vector information for the bus adheres to this

ordering. signal_columns is set to 8 to indicate the total number of columns of pattern bit

information associated with all vectors in the Pattern blocks.

Start Example

End Example

Start Example

End Example

Start Example

End Example

0 x001a 0x000a 0x0009 “group_ALL” 0x0004 0x02 0x0007 “muxsig1” 0x 00

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

100

Also, notice that the bus flag is not set to 0x01 in this example. The bus flag is set to 0x01

only when a range is being specified for output on the pattern header.

0x001f 0x000a 0x0009 “group_ALL” 0x0009 0x02 0x0004 “sig1” 0x00 0x02

0x0004 “data” 0x00

Example WGL, illustrating a bus with a range specification: The bus vector information

is found in a different order than as specified in the Signal block. Notice that for the bus

addr, the begin_range values are 4, 0, and 5 and the end_range values are 3, 2, and 7.

signal

 sig1 [sig1_1, sig1_2, sig1_3, sig1_4]: mux input;

 addr[0..7] : input radix binary;

end

pattern group_ALL (sig1, addr[4..3], addr[0..2], addr[5..7])

Equivalent binary, illustrating a bus with a range specification: signal_columns is set to

twelve to indicate the total number of columns of pattern bit information associated with all

vectors in the pattern block. In each case where the range is specified, the bus flag is set to

0x01.

0x003B 0x000a 0x0009 “group_ALL” 0x000c 0x02 0x0004 “sig1” 0x00 0x02

0x0004 “addr” 0x01 0x0004 0x0003 0x02 0x0004 “addr” 0x01 0x0000 0x0002

0x02 0x0004
“addr” 0x01 0x0005 0x0007

Individual bus elements may be specified by setting both thebegin_range and the

end_range to the bus element number.

End Pattern

The WGL Pattern block terminates with an end statement.

byte_count line_type

Table 16. End Pattern Line Type

Start Example

End Example

Start Example

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

101

Item Type Description

line_type short 0x0002

Example WGL:

Equivalent binary:

Subroutine Header

A WGL Subroutine block begins with a subroutine header line that defines the name of the

subroutine. This name is referenced when the subroutine is called.

byte_count line_type name

Table 17. Subroutine Header Line Type

Item Type Description

line_type short 0x0001

name chars Characters in subroutine name

Example WGL:

Equivalent binary:

End Subroutine

Subroutine blocks require an end statement.

Start Example

End Example

end

Start Example

End Example

0 x0002 0x0002

Start Example

End Example

subroutine subr0()

Start Example

End Example

0 x0007 0x0001 "subr0"

Waveform Generation Language

TSSI © 1979-2026

102

byte_count line_type

Table 18. End Subroutine Line Type

Item Type Description

line_type short 0x000e

Example WGL:

Equivalent binary:

NOTE

ASCII WGL has one end statement for both Subroutines and Patterns blocks,

while the binary form explicitly provides separate statements for each.

Vector

Vector statements define the parallel, pattern vectors.

byte_count line_type tp_name_len tp_name map_key vectors

Table 19. Vector Line Type

Item Type Description

line_type short 0x0000

tp_name_len short Number of characters in TimePlate name

tp_name chars TimePlate name

map_key byte Selects the map key

vectors a Vector pattern data

a. Defined by map_key (see “Map Key” below). 0s are used to pad the data until the

last byte is complete.

Start Example

End Example

end

Start Example

End Example

0 x0002 0x000e

Waveform Generation Language

TSSI © 1979-2026

103

Map Key

A map key is referenced in all vector and scan lines, defining the mapping between WGL

pattern characters and their equivalent binary format. (See Table 20 through Table 23.)

Different map keys can be used for different pattern lines within the same file. For example,

use map key 3 (Table 23) for all vector and scan pattern row lines and use map key 2 (Table

21) for all scan state vector information.

Map key 0 uses three binary bits for every WGL character. It supports all the state characters:

0, 1, Z, and X.

Table 20. Map Key 0: Default General Mapping

(map_key = 0x00)

Character Bit Map

0 000

1 001

Z 010

X 011

- 111

Map key 1 provides for representation of scan data although it is not restricted to scan data.

Mapping a WGL character into one bit of information provides for more compact data files.

This mapping is suggested for scan test cases that do not contain Z or X data, only 0 and 1.

Table 21. Map Key 1: Intended for Scan Use

(map_key = 0x01)

Character Bit Map

0 0

1 1

Z Not used

X Not used

- Not used

Waveform Generation Language

TSSI © 1979-2026

104

Map key 2 provides for representation of scan data that contains the pattern character X in

addition to 0 and 1. A WGL character is mapped into two bits of information.

Table 22. Map Key 2: Intended for Scan Use

(map_key = 0x02)

Character Bit Map

0 00

1 01

Z Not used

X 11

- Not used

Map key 3 provides general mapping for test cases that do not contain Z data.

A WGL character is mapped into two bits of information

.

Table 23. Map Key 3: General Mapping (map_key

= 0x03)

Character Bit Map

0 00

1 01

Z Not used

X 10

- 11

Example WGL:

for the pattern header
pattern group_ALL (sig1, sig2, sig3, sig4)
this vector row would be encoded:

vector(tp1) := [0 1 1 0];

Equivalent binary with a map key of 0:

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

105

0x000a 0x0000 0x0003 "tp1" 0x00 000 001 001 000 0000
^^^^ pad bits

Alternate equivalent binary with a map key of 1: A more compact vector representation

could have been done using a different map key.

0x0009 0x0000 0x0003 “tp1” 0x01 0 1 1 0 0000
^^^^ pad bits

Loop

In ASCII WGL, the loop statement supports an optional loop name. In the binary format,

the optional loop name is not supported. The binary equivalent of the loop count is

expressed as a 32-bit, unsigned long allowing for the maximum size of loop count.

byte_count line_type loop_count

Table 24. Loop Line Type

Item Type Description

line_type short 0x0003

loop_count long Integer loop count

Example WGL:

Equivalent binary:

End Loop

In ASCII WGL, the loop end statement supports an optional loop name. In binary format,

the optional loop name is not supported.

Start Example

End Example

Start Example

End Example

Start Example

End Example

Loop 5

Start Example

End Example

0x0006 0x0003 0x00000005

Waveform Generation Language

TSSI © 1979-2026

106

byte_count line_type

Table 25. End Loop Line Type

Item Type Description

line_type short 0x0004

Example WGL:

Equivalent binary:

Subroutine Call

Subroutine calls are followed by the subroutine name.

byte_count line_type name

Table 26. Subroutine Call Line Type

Item Type Description

line_type short 0x0005

name chars Subroutine name

Example WGL:

Equivalent binary:

Start Example

End Example

end

Start Example

End Example

0 x0002 0x0004

Start Example

End Example

call subr0();

Start Example

End Example

 0x0007 0x0005 "subr0"

Waveform Generation Language

TSSI © 1979-2026

107

Repeat

Repeat is used with vectors, loops, or call constructs. Its primary use is on vector lines. This

command always indicates that the next command is to be repeated the specified number of

times. This line type is always followed by a 32-bit, unsigned integer.

byte_count line_type repeat_count

Table 27. Repeat Line Type

Item Type Description

line_type short 0x0009

repeat_count long Number of times to repeat next statement.

Example WGL:

Equivalent binary:

Scan Parallel

Two binary line types are required to support a single scan vector as defined in ASCII WGL. In

the binary format, the scan parallel line defines the parallel vector states of all the pins in the same

format as the vector line. This line does not contain any of the scan chain or scan state vector

information. (See “Scan Chain” for state and chain information.)

byte_count line_type tp_name_len tp_name map_key vector

Table 28. Scan Parallel Line Type

Item Type Description

line_type short 0x0007

tp_name_len short Number of characters in TimePlate

tp_name chars TimePlate group name

Start Example

End Example

repeat 5

Start Example

End Example

 0x0006 0x0009 0x00000005

Waveform Generation Language

TSSI © 1979-2026

108

map_key byte Selects the map key

vector a Parallel vector data

a. Defined by map_key (see “Map Key” on page 6-121). 0s are used to pad the data

until the last byte is complete.

Example WGL:

Equivalent binary:

0x000b 0x0007 0x0004 "read" 0x00 000 000 111 111 0000
^^^^ pad bits

Scan Chain

In ASCII WGL, a scan vector references a scan run which consists of a scan chain, the

direction of the chain, and a state vector. In ASCII WGL, all state vectors are defined within

the ScanState block prior to the pattern block. In addition, the scan state defines the values

of all scan cells in the device in ASCII WGL.

The binary format differs from the ASCII representation. In the binary format, the scan

chain and scan chain direction are still required. But instead of referencing a specific state

vector the state vector data follow in-line. The in-line scan state information represents only

the data which is to be loaded or observed by the specified scan chain.

The scan chain line must follow either a scan parallel line or another scan chain line. The

last_chain field identifies the end of the scan chain information.

byte_count line_type last_chain chain_dir name_len

chain_name state_bits map_key scan_states

Table 29. Scan Chain Line Type

Item Type Description

line_type short 0x0008

Start Example

End Example

scan(read) := [0 0 - -]

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

109

last_chain byte 0x00 if another chain follows, 0x01 if last in

series

chain_dir byte Scan chain direction where:
0x00 = input chain,
0x01 = output chain,
0x0f = input/output (feedback) chain

name_len short Number of characters in chain name

chain_name chars Chain name

state_bits short Number of data bits in the scan state vector

for this chain. That is, the number of data bits

to be loaded or observed for this chain.

map_key byte Selects the map key

scan_states a Scan run pattern data

a. Defined by map_key (see “Map Key” on page 6-121). 0s are used to pad the data

until the last byte is complete.

Example WGL: In the ASCII WGL file, ssi_1 refers to a scan state vector containing

011100 as data bits for chain ch1 on input and sso_1 refers to a state vector containing

011011 as data bits for chain ch1 on output. These state vectors are previously defined

within the ScanState block in the ASCII WGL file.

scan(read) := [0 0 - -] {this portion of the vector has already been

specified by the scan parallel binary equivalent }
input[ch1 : ssi_1],

output[ch1 : sso_1];

Equivalent binary: The output scan chain and its corresponding scan state are translated

into binary format using the map key 1 whereas the input chain uses map key 2.

0x000e 0x0008 0x00 0x00 0x0003 "ch1" 0x0006 0x02 00 01 01 01 00 00 00 00
 ^^ ^^ pad

0x000d 0x0008 0x01 0x01 0x0003 "ch1" 0x0006 0x01 0 1 1 0 1 1 00
^^ pad bits

Start Example

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

110

Skip

The reserved word skip provides for the declaration of a time period when the waveform

state is unspecified. In the binary format, the time value, including time units, is provided as

a string.

byte_count line_type time_string

Table 30. Skip Line Type

Item Type Description

line_type short 0x0006

time_string chars Time value, including units, for skip duration

Example WGL:

Equivalent binary:

Annotations

Annotations are attached to the previous line.

byte_count line_type annotation

Table 31. Annotation Line Type

Item Type Description

line_type short 0x000b

annotation chars Annotation string

Example WGL:

Start Example

End Example

skip 400ns;

Start Example

End Example

0 x0007 0x0006 “400ns”

Start Example

End Example

{ this is an annotation }

Waveform Generation Language

TSSI © 1979-2026

111

Equivalent binary:

End Binary

To terminate the binary section of the WGL file, use this command. The parser then expects

ASCII WGL to follow. No WGL equivalent exists for this statement.

byte_count line_type

Table 32. End Binary Line Type

Item Type Description

line_type short 0x000f

Binary format:

Examples of ASCII and the Equivalent Binary
Two examples are provided to illustrate the use of binary pattern data. The first example

shows the handling of scan vectors, and the second example shows subroutine call, loop,

and skip statements. Within each example:

o The original WGL file is shown, followed by

o The WGL file without the pattern block but including a reference to the separate

binary file

o An ASCII version of what the binary portion of the file would look like o Finally,

the binary representation of the pattern block

Example 1

This example contains two scan chains of different lengths.

Example WGL file:

Start Example

End Example

0 x0017 0x000b "this is an annotation"

Start Example

End Example

0 x0002 0x000f

Start Example

Waveform Generation Language

TSSI © 1979-2026

112

waveform patternload pmode[dont_care];

signal

sig1 :bidir;

sig2 :input;

sig3 :output;

SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUT2 : output;

end

scanCell a; b; c; d; e; f; g; h; ii; j; k; l; m; n; oo; p; q; r; s; t; u;

v; w; x; a1; b1; c1; d1; e1; f1; g1; h1; i1; j1; k1; l1; m1; n1; o1; end

scanChain ch1 [SC_IN, a, b, c, d, e, f, g, h, ii, j, k, l, m, n, oo, p,

q, r, s, t, u, v, w, x, SC_OUT]; ch2 [SC_IN2, a1, b1, c1, d1, e1, f1,

g1, h1, i1, j1, k1, l1, m1, n1, o1, SC_OUT2]; end

scanState
TDS_state0 := ch1(110011100001001000110100) ch2(110011100001001);
TDS_state1 := ch1(11X01X10000100X000110X00);
TDS_stateX := ;

end

timeplate tp1 period 200ns

sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];

sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];
SC_IN, SC_IN2:= input[0pS:D];
SC_OUT, SC_OUT2 := output[0pS:X];

end

timeplate scanPlate period 500nS
SC_IN2, SC_IN := input[0pS:P, 100nS:S];
SC_OUT2, SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];

sig1 := input[0pS:S];

sig2 := input[0pS:D];

sig3 := output[0pS:X];

end

pattern pattern0 (sig1:I, sig1:O, sig2, sig3, SC_IN, SC_OUT, SC_IN2,
SC_OUT2)

vector (0, 0pS, tp1) := [0 1 X Z - - - -];

scan(scanPlate) := [1 - - - - - - -],

Waveform Generation Language

TSSI © 1979-2026

113

input[ch1:TDS_state0], output[ch1:TDS_state1],

input[ch2:TDS_state0], output[ch2:TDS_stateX];
end end

WGL file referencing binary pattern file: The above WGL file is changed slightly to include a

binarypattern file statement that references the binary pattern file named wgl.bin. Notice that the

ScanState and the Pattern blocks are no longer included in the WGL file.

waveform patternload

pmode[dont_care]; signal

sig1 :bidir;

sig2 :input;

sig3 :output;

SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUT2 : output; end

scanCell a; b; c; d; e; f; g; h; ii; j; k; l; m; n; oo; p; q; r; s; t; u; v;

w; x; a1; b1; c1; d1; e1; f1; g1; h1; i1; j1; k1; l1; m1; n1; o1; end

scanChain ch1 [SC_IN, a, b, c, d, e, f, g, h, ii, j, k, l, m, n, oo, p, q, r,

s, t, u, v, w, x, SC_OUT]; ch2 [SC_IN2, a1, b1, c1, d1, e1, f1, g1, h1, i1,

j1, k1, l1, m1, n1, o1, SC_OUT2];
end

timeplate tp1 period 200ns

sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];

sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];
SC_IN, SC_IN2:= input[0pS:D];
SC_OUT, SC_OUT2 := output[0pS:X]; end

timeplate scanPlate period 500nS
SC_IN2, SC_IN := input[0pS:P, 100nS:S];

SC_OUT2, SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];

sig1 := input[0pS:S];

sig2 := input[0pS:D];

sig3 := output[0pS:X];

end

binarypattern file := wgl.bin;

end

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

114

ASCII representation of the binary pattern file wgl.bin: This section is only an illustration of

what the binary WGL looks like. It shows the unique line types and their ordering. Scan

information follows the scan row and contains a direction, a chain name, and the state

information. End statements for the completion of the pattern section and the binary file are

required.

{ Version "1.0" }
pattern pattern0 (sig1:I, sig1:O, sig2, sig3, SC_IN, SC_OUT, SC_IN2,
SC_OUT2)
vector(tp1) := [0 1 X Z - - - -];

scan(scanplate) := [1 - - - - - - -]
input[“ch1”: 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0],

output[“ch1”: 1 1 X 0 1 X 1 0 0 0 0 1 0 0 X 0 0 0 1 1 0 X 0 0],

input[“ch2”: 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1],

output[“ch2”:X X X X X X X X X X X X X X X];

end { pattern }

end { binary }

Binary representation: The following is the binary equivalent for the pattern section shown

above. For simplicity, signal names, TimePlate names, and scan chain names are shown here as

strings instead of in binary, and the 0x notation, indicating hexadecimal, is not included.

In this example, vector information for tp1 and scanPlate is specified using map key 0. The input

state vector information for ch1 and ch2 is specified using map key 1. The output state vector

information for ch1 and ch2 is specified using map key 2.

0006 00ff 0001 0000

0056 000a 0008 "pattern0" 0008 00 0004 "sig1" 00 01 0004 "sig1" 00 02 0004 "sig2" 00 02 0004 "sig3" 00
02 0005 “SC_IN” 00 02 0006 “SC_OUT” 00 02 0006 “SC_IN2” 00 02 0007 “SC_OUT2 00 ”
000b 0000 0003 "tp1" 00 05 af ff
0011 0007 0009 "scanPlate" 03 7f ff
000f 0008 0000 0003 “ch1” 00 18 01 ce 12 34
0012 0008 0001 0003 “ch1” 00 18 02 5c 74 01 0c 05 30
000e 0008 0000 0003 “ch2” 00 0f 01 ce 12
0010 0008 0101 0003 “ch2” 00 0f 02 ff ff ff fc
0002 0002
0002 000f

End Example

Start Example

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

115

Example 2

This example has subroutine, loop, and skip statements, and an annotation. Example WGL file:

waveform patternload pmode[dont_care];

signal

sig1 :bidir;

sig2 :input;

sig3 :output;

end

timeplate tp1 period 200ns

sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];

sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];

end

timeplate read1 period 200ns

sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q,

175ns:X]; sig2 := input[0ps:U];

sig3 := output[0ps:X];

end

timeplate write period 200ns

sig1 := bidir[0ps:X, 75ns:Q, 95ns:X, 100ns:X, 120ns:Q, 175ns:X];

sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];

end

pattern pattern0 (sig1:I, sig1:O, sig2, sig3)

vector (0, tp1) := [0 1 X Z];
vector (+, read1) := [1 1 - -]; {this is commentA}

loop 5
vector (+, write) := [X X X X];

vector (+, read1) := [1 0 X -];{DXY test}

end {end loop}

call sub0();

end {end pattern block}

subroutine sub0()

skip 400ns;

Start Example

Waveform Generation Language

TSSI © 1979-2026

116

vector (+, write) := [0 0 0 0];

end {end subroutine }

end {end waveform}

WGL file referencing binary pattern file:

waveform patternload pmode[dont_care];

signal

 sig1 :bidir;

 sig2 :input;

 sig3 :output;

end

timeplate tp1 period 200ns

 sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];

 sig2 := input[0ps:S];
 sig3 := output[0ps:X, 75ns:Q, 95ns:X]; end

timeplate read1 period 200ns

 sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];

 sig2 := input[0ps:U];

 sig3 := output[0ps:X];

end

timeplate write period 200ns

sig1 := bidir[0ps:X, 75ns:Q, 95ns:X, 100ns:X, 120ns:Q, 175ns:X];

sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X]; end

binarypattern file:=wgl.bin;

end

ASCII representation of the binary pattern file wgl.bin: This section is only an illustration

of what the binary WGL looks like. It shows the unique line types and their ordering.

{ Version "1.0" }
pattern pattern0 (sig1:I, sig1:O, sig2, sig3)

End Example

Start Example

End Example

Start Example

Waveform Generation Language

TSSI © 1979-2026

117

 vector(tp1) := [0 1 X Z];

 vector(read1) := [1 1 - -];{ this is commentA }

 loop 5

 vector(write) := [X X X X];

 vector(read1) := [- - - -];{ DXY test }

 end

 call sub0()

end

subroutine sub0()

 skip 400ns;

 vector(write) := [0 0 0 0];

end

end

Binary representation: The following is the binary equivalent for the pattern section shown

above. For simplicity, signal names, TimePlate names, and subroutine names are shown here as

strings instead of in binary, and the 0x notation, indicating hexadecimal, is not included. The

vector information is specified using map key 0.

0006 00ff 0001 0000
002e 000a 0008 "pattern0" 0004 00 0004 "sig1" 00 01 0004 "sig1" 00 02
0004 "sig2" 00 02 0004 "sig3" 00
000a 0000 0003 "tp1" 00 05 a0
000b 0000 0005 “read1” 03 5f
0012 000b “this is commentA”
0006 0003 0000 0005
000b 0000 0005 “write” 02 ff
000b 0000 0005 “read1” 03 4b
000a 000b “DXY test”
0002 0004
0006 0005 “sub0”
0002 0002
0006 0001 “sub0”
0007 0006 “400ns”
000c 0000 0005 “write” 00 00 00
0002 000e
0002 000f

End Example

Start Example

End Example

Waveform Generation Language

TSSI © 1979-2026

118

Glossary of WGL Terminology
All user-defined identifiers, such as <TDSstate>, used in the WGL BNF representation are found

in this glossary. (A string is a sequence of characters surrounded by double quotation marks.

Embedded double quotation marks and back slashes must be preceded by a back slash.)

any explanatory text

The text of a comment.

atepinName

An identifier or string previously declared as an ATE pin name in the Signals block. bitNumber

A number specifying a single bit of a multi-bit bus.

If you specify a range (<bitNumber> .. <bitNumber>), the firstbitNumber defines the most

significant bit (MSB); the secondbitNumber defines the least significant bit (LSB). There is no

restriction on which number is larger. (The bits of the register may be labeled in increasing or

decreasing order.)

cellName

An identifier or string naming a scan cell. Must be unique among all signals, buses, groups, scan

chains, scan registers, and other cells.

chainName

An identifier or string naming a scan chain. Must be unique among all signals, buses, groups, scan

cells, scan registers, and other scan chains.

cycleNumber

The numeric cycle number of a pattern vector.

edgeCount

A number indicating the number of edges associated with a timing generator.

edgeNumber

The index of a particular edge of a timing generator.

end-of-line

Waveform Generation Language

TSSI © 1979-2026

119

The end of line indicator.

equationSheetName

An identifier or string naming an EquationSheet block.

exprSetName

An identifier or string naming an ExprSet sub-block.

fileName

The alphanumeric include file name. May be optionally enclosed in double quotation marks (“ ”)

or angle brackets (< >).

floatingPointValue

A number containing the digits 0 - 9 and one decimal point (.).

formatName

An identifier or string naming a tester-specific format. Must be unique among all format names.

identifier

The alphanumeric name of a signal, bus, group, TimePlate, format, timegen, pattern, subroutine,

et cetera. Identifiers are made up of a sequence of characters that does not include any of the following

delimiters: # { } “ ” .. () + , : ; [] or white space. Identifiers may not begin with a digit or exactly

match any reserved keyword. Names that violate these rules may generally be used provided they are

enclosed in double quotation marks and any embedded double quotation mark or back slash characters

are preceded with a back slash.

integerValue

A number containing the digits 0 - 9.

loopCount

A number specifying the iteration count of a pattern loop.

loopName

An identifier tagging a pattern loop begin and end statements. These are for documentation

purposes only.

Waveform Generation Language

TSSI © 1979-2026

120

macroBody

The text that makes up the body of a macro definition.

macroName

An identifier used in a macro definition or its invocation.

macroParameter

An identifier used as a parameter in a macro definition.

MuxPartName

An identifier associating a particular ATE resource as a source for pattern data to a multiplexed

signal or bus. Within a Signals block, reference a <MuxPartName> only once.

patternIdentifier

An identifier assigned to a particular pattern expression in a symbolic block that may be used in

pattern and subroutine blocks as an alias for that pattern expression.

patternName

An identifier naming a pattern block that also may identify a tester-specific pattern load (also

called a burst). <patternName>s are saved in the database.

patternNameStr

An identifier naming a pattern block that also may identify a tester-specific pattern load (also

called a burst). String notation allows the use of characters not otherwise permitted.

<patternNameStr>s are saved in the database.

pinElemName

A string identifying an ATE pin.

pinGrpName

A unique identifier for a group.

pinName

An identifier string, or number identifying the name of a DUT or ATE pin.

pinNumber

Waveform Generation Language

TSSI © 1979-2026

121

An identifie,r string, or number identifying the number of a DUT or ATE pin.

registerName

An identifier or string naming a tester-specific format register. Must be unique among all

register names.

repeatCount

A number specifying the number of times a pattern vector is to be repeated.

signalName

An identifier or string specifying the name of a signal, group, or bus.

stateName

An identifier or string naming a particular set of logic state values stored in all scan cells. Must be

unique among all other state names.

stateString

A sequence of pattern state characters or numbers appearing in a pattern row interpreted

according to the width, direction, and radix of the corresponding pattern parameter.

subroutineName

An identifier naming a subroutine declaration or invocation.

timeGenName

An identifier or string naming a tester-specific timing generator.

timeplateName

An identifier naming a TDS timing template. It is defined in a TimePlate block that is referenced

in a vector address in a pattern block. Must be unique among all TimePlate names.

timeValue

A number, optionally including a decimal point, specifying a particular time.

TDSstate

A single character that can be any of D, U, N, Z, S, C, P, L, H, X, T, Q, R, 0, 1, F, ?. Case is

significant.

Waveform Generation Language

TSSI © 1979-2026

122

tsNumber

A numeric value used to identify individual timing sets.

validityClause

A signal name and state value as used in a Signal Definition file. (See the “Use-rDefined Files”

chapter, found in this guide, for the syntax requirements of the Signal Definition file.) Use this

clause within the strobe clause to specify the direction of a signal based on another signal’s state

value.

variableName

An identifier or string naming an equation variable.

vectorLabel

An identifier or string ...

waveFormName

An identifier or string naming the waveform program. This name is for documentation

purposes only. It is not stored in the WDB database.

Waveform Generation Language

TSSI © 1979-2026

123

Index

Waveform Generation .. 1

Introduction .. 1

WGL Language Conventions .. 1

WGL Syntax Notation Conventions ...2

Comments ...3

Identifiers ..4

Numbers ..4

Reserved Words ...4

Strings ...5

WGL Syntax .. 5

General Syntax ...6
Multi-time Domain Waveform Blocks ... 6
Free-running and Asynchronous Clocks .. 6
Details of a Typical Single WGL Waveform Block .. 8

Program Block Syntax... 12

Generic Program Blocks.. 13
Signals .. 14
Single-Bit Signals .. 15
Buses .. 16
Groups.. 16
ALL .. 17
ALLINPUT.. 17
ALLOUTPUT .. 17
ALLBIDIR ... 17
ALLMUX .. 17
Multiplexed Signals or Buses ... 17
atepin ... 18
Scan Cells ... 23
Scan State .. 24
Scan Chain .. 26
TimePlates.. 29
Patterns .. 34

Waveform Generation Language

TSSI © 1979-2026

124

Subroutines .. 45
Symbolics ... 46

Equation-Specific Program Blocks ... 49
EquationSheet.. 50
EquationDefaults ... 61

Tester-Specific Program Blocks ... 66
Formats .. 66
Registers... 68
Pin Groups.. 69
TimeGens ... 71
TimingSets .. 72

Additional Features .. 74

Macros .. 74
Macro Definition .. 75
Macro Invocation ... 76
Definition and Invocation without Parameters ... 76
Definition and Invocation with Parameters .. 77

Include Files ... 79

Annotations ... 80

Global Mode .. 81
pmode Attribute .. 81

Examples .. 83

Using WGL Macros and Include Files to Simplify Testing .. 83

Using WGL to Support Scan Test Hardware ... 88

Using Annotations in WGL .. 91

Binary WGL... 92

WGL Binary Interface ... 92

Binary File Format .. 95
Definitions .. 95
Line Format .. 95
Line Type .. 96
Line Type Ordering... 97
Line Type Description .. 97

Examples of ASCII and the Equivalent Binary... 111
Example 1 ... 111
Example 2 ... 115

Waveform Generation Language

TSSI © 1979-2026

125

Glossary of WGL Terminology ... 118

atepinName ... 118

cellName ... 118

edgeCount ... 118

equationSheetName .. 119

fileName .. 119

floatingPointValue ... 119

identifier .. 119

loopCount .. 119

macroBody .. 120

MuxPartName ... 120

patternIdentifier .. 120

registerName ... 121

stateName ... 121

stateString ... 121

subroutineName .. 121

timeplateName .. 121

timeValue .. 121

validityClause... 122

waveFormName ... 122

Copyright and Usage Notice .. 126

Related Documents ... 126

Contact ... 126

Waveform Generation Language

TSSI © 1979-2026

126

Copyright and Usage Notice

Copyright © 1979-2026 Test Systems Strategies Inc (“TSSI”). All rights reserved.

This document has been voluntarily contributed by Test Systems Strategies Inc to serve as an open

industry standard for the benefit of the semiconductor design and test communities. It is intended for

widespread adoption and reference across both non-commercial and commercial applications.

The author retains full copyright but grants permission for this document to be used, reproduced, and

distributed — including for commercial purposes — provided that:

• The content is not altered.

• Proper attribution is given to the author: Test Systems Strategies Inc (“TSSI”).

• The document is not misrepresented as being authored by others.

Adoption of this standard does not imply endorsement or warranty by the author.

Related Documents
• Test Control Language. This document is part of TSSI product suites to provide control over

test program writing modules, known as WaveBridges and TesterBridges. Contact TSSI for a

copy.

Contact
TSSI World Headquarters
500 SW 116th Avenue, 4th Floor
Beaverton, Oregon 97225
USA

Email: info@tessi.com

Website: www.tessi.com/contact-us

mailto:info@tessi.com
http://www.tessi.com/contact-us

	Waveform Generation
	Introduction
	WGL Language Conventions
	WGL Syntax Notation Conventions
	NOTE

	Comments
	Identifiers
	Numbers
	Reserved Words
	Strings

	WGL Syntax
	General Syntax
	Multi-time Domain Waveform Blocks
	Free-running and Asynchronous Clocks
	Details of a Typical Single WGL Waveform Block

	Program Block Syntax
	Generic Program Blocks
	Signals
	Single-Bit Signals
	Buses
	Groups
	ALL
	ALLINPUT
	ALLOUTPUT
	ALLBIDIR
	ALLMUX
	Multiplexed Signals or Buses
	atepin
	NOTE
	direction
	freerunningclock
	Strobe Clause
	dutpin
	mux
	initialp
	Radix

	Scan Cells
	Scan State
	Scan Chain
	TimePlates
	NOTE
	NOTE
	NOTE

	Patterns
	Subroutines
	Symbolics

	Equation-Specific Program Blocks
	NOTE
	EquationSheet
	ExprSet
	Variables
	Constants
	Expressions
	Operators and Incrementors
	Built-ins
	Annotations
	Scaling
	Units of Measurement
	Minimum and Maximum Ranges

	EquationDefaults

	Tester-Specific Program Blocks
	Formats
	NOTE
	Table 8. WGL-pattern-state to TDS-logic-state mapping

	Registers
	Pin Groups
	NOTE

	TimeGens
	TimingSets
	NOTE

	Additional Features
	Macros
	Macro Definition
	Macro Invocation
	Definition and Invocation without Parameters
	Definition and Invocation with Parameters

	Include Files
	Annotations
	Global Mode
	pmode Attribute
	Table 10. P Mode definitions

	Examples
	Using WGL Macros and Include Files to Simplify Testing
	NOTE

	Using WGL to Support Scan Test Hardware
	Using Annotations in WGL

	Binary WGL
	WGL Binary Interface
	Binary File Format
	Definitions
	Line Format
	Line Type
	Line Type Ordering
	Line Type Description
	Version Control
	Pattern Header
	End Pattern
	Subroutine Header
	End Subroutine
	NOTE

	Vector
	Table 20. Map Key 0: Default General Mapping (map_key = 0x00)
	Table 21. Map Key 1: Intended for Scan Use (map_key = 0x01)
	Table 22. Map Key 2: Intended for Scan Use (map_key = 0x02)
	Table 23. Map Key 3: General Mapping (map_key = 0x03)

	Loop
	End Loop
	Subroutine Call
	Repeat
	Scan Parallel
	Scan Chain
	Skip
	Annotations
	End Binary

	Examples of ASCII and the Equivalent Binary
	Example 1
	Example 2

	Glossary of WGL Terminology
	atepinName
	cellName
	edgeCount
	equationSheetName
	fileName
	floatingPointValue
	identifier
	loopCount
	macroBody
	MuxPartName
	patternIdentifier
	registerName
	stateName
	stateString
	subroutineName
	timeplateName
	timeValue
	validityClause
	waveFormName

	Copyright and Usage Notice
	Related Documents
	Contact

